These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse. Perfeito R; Cunha-Oliveira T; Rego AC Free Radic Biol Med; 2013 Sep; 62():186-201. PubMed ID: 23743292 [TBL] [Abstract][Full Text] [Related]
3. Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy. Choubey V; Safiulina D; Vaarmann A; Cagalinec M; Wareski P; Kuum M; Zharkovsky A; Kaasik A J Biol Chem; 2011 Mar; 286(12):10814-24. PubMed ID: 21252228 [TBL] [Abstract][Full Text] [Related]
4. DLP1-dependent mitochondrial fragmentation mediates 1-methyl-4-phenylpyridinium toxicity in neurons: implications for Parkinson's disease. Wang X; Su B; Liu W; He X; Gao Y; Castellani RJ; Perry G; Smith MA; Zhu X Aging Cell; 2011 Oct; 10(5):807-23. PubMed ID: 21615675 [TBL] [Abstract][Full Text] [Related]
5. Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo: Implications for idiopathic Parkinson's disease. Zhao F; Wang W; Wang C; Siedlak SL; Fujioka H; Tang B; Zhu X Biochim Biophys Acta Mol Basis Dis; 2017 Jun; 1863(6):1359-1370. PubMed ID: 28215578 [TBL] [Abstract][Full Text] [Related]
6. The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling. Saez-Atienzar S; Bonet-Ponce L; Blesa JR; Romero FJ; Murphy MP; Jordan J; Galindo MF Cell Death Dis; 2014 Aug; 5(8):e1368. PubMed ID: 25118928 [TBL] [Abstract][Full Text] [Related]
7. Phosphorylation of Parkin at serine 131 by p38 MAPK promotes mitochondrial dysfunction and neuronal death in mutant A53T α-synuclein model of Parkinson's disease. Chen J; Ren Y; Gui C; Zhao M; Wu X; Mao K; Li W; Zou F Cell Death Dis; 2018 Jun; 9(6):700. PubMed ID: 29899409 [TBL] [Abstract][Full Text] [Related]
8. The Overcrowded Crossroads: Mitochondria, Alpha-Synuclein, and the Endo-Lysosomal System Interaction in Parkinson's Disease. Lin KJ; Lin KL; Chen SD; Liou CW; Chuang YC; Lin HY; Lin TK Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31731450 [TBL] [Abstract][Full Text] [Related]
9. Deficiency of RAB39B Activates ER Stress-Induced Pro-apoptotic Pathway and Causes Mitochondrial Dysfunction and Oxidative Stress in Dopaminergic Neurons by Impairing Autophagy and Upregulating α-Synuclein. Chiu CC; Weng YH; Yeh TH; Lu JC; Chen WS; Li AH; Chen YL; Wei KC; Wang HL Mol Neurobiol; 2023 May; 60(5):2706-2728. PubMed ID: 36715921 [TBL] [Abstract][Full Text] [Related]
10. Fas-associated factor 1 induces the accumulation of α-synuclein through autophagic suppression in dopaminergic neurons. Kim BS; Jang T; Yoo SE; Lee JM; Kim E FASEB J; 2021 Apr; 35(4):e21363. PubMed ID: 33749937 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial dynamics in Parkinson's disease: a role for α-synuclein? Pozo Devoto VM; Falzone TL Dis Model Mech; 2017 Sep; 10(9):1075-1087. PubMed ID: 28883016 [TBL] [Abstract][Full Text] [Related]
13. Aggregation of alpha-synuclein disrupts mitochondrial metabolism and induce mitophagy via cardiolipin externalization. Lurette O; Martín-Jiménez R; Khan M; Sheta R; Jean S; Schofield M; Teixeira M; Rodriguez-Aller R; Perron I; Oueslati A; Hebert-Chatelain E Cell Death Dis; 2023 Nov; 14(11):729. PubMed ID: 37949858 [TBL] [Abstract][Full Text] [Related]
14. Autophagy protects the rotenone-induced cell death in alpha-synuclein overexpressing SH-SY5Y cells. Dadakhujaev S; Noh HS; Jung EJ; Cha JY; Baek SM; Ha JH; Kim DR Neurosci Lett; 2010 Mar; 472(1):47-52. PubMed ID: 20117172 [TBL] [Abstract][Full Text] [Related]
15. Gene Co-expression Analysis of the Human Substantia Nigra Identifies ZNHIT1 as an SNCA Co-expressed Gene that Protects Against α-Synuclein-Induced Impairments in Neurite Growth and Mitochondrial Dysfunction in SH-SY5Y Cells. McCarthy E; Barron A; Morales-Prieto N; Mazzocchi M; McCarthy CM; Collins LM; Sullivan AM; O'Keeffe GW Mol Neurobiol; 2022 May; 59(5):2745-2757. PubMed ID: 35175558 [TBL] [Abstract][Full Text] [Related]
16. Gene co-expression analysis of the human substantia nigra identifies BMP2 as a neurotrophic factor that can promote neurite growth in cells overexpressing wild-type or A53T α-synuclein. Goulding SR; Sullivan AM; O'Keeffe GW; Collins LM Parkinsonism Relat Disord; 2019 Jul; 64():194-201. PubMed ID: 31000327 [TBL] [Abstract][Full Text] [Related]
17. Suppression of autophagy in the brain of transgenic mice with overexpression of А53Т-mutant α-synuclein as an early event at synucleinopathy progression. Pupyshev AB; Korolenko TA; Akopyan AA; Amstislavskaya TG; Tikhonova MA Neurosci Lett; 2018 Apr; 672():140-144. PubMed ID: 29203207 [TBL] [Abstract][Full Text] [Related]
18. Parkinson's disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Wang W; Wang X; Fujioka H; Hoppel C; Whone AL; Caldwell MA; Cullen PJ; Liu J; Zhu X Nat Med; 2016 Jan; 22(1):54-63. PubMed ID: 26618722 [TBL] [Abstract][Full Text] [Related]
19. Impairment of mitochondria dynamics by human A53T α-synuclein and rescue by NAP (davunetide) in a cell model for Parkinson's disease. Melo TQ; van Zomeren KC; Ferrari MF; Boddeke HW; Copray JC Exp Brain Res; 2017 Mar; 235(3):731-742. PubMed ID: 27866262 [TBL] [Abstract][Full Text] [Related]