BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 29414466)

  • 1. Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: Experimental and numerical approaches.
    Naghieh S; Karamooz-Ravari MR; Sarker MD; Karki E; Chen X
    J Mech Behav Biomed Mater; 2018 Apr; 80():111-118. PubMed ID: 29414466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of ionic crosslinkers (Ca
    Sarker M; Izadifar M; Schreyer D; Chen X
    J Biomater Sci Polym Ed; 2018 Jul; 29(10):1126-1154. PubMed ID: 29376775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a polyvinyl alcohol-alginate based hydrogel for precise 3D bioprinting.
    Yu F; Han X; Zhang K; Dai B; Shen S; Gao X; Teng H; Wang X; Li L; Ju H; Wang W; Zhang J; Jiang Q
    J Biomed Mater Res A; 2018 Nov; 106(11):2944-2954. PubMed ID: 30329209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting.
    Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ
    J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprinting Pattern-Dependent Electrical/Mechanical Behavior of Cardiac Alginate Implants: Characterization and Ex Vivo Phase-Contrast Microtomography Assessment.
    Izadifar M; Babyn P; Kelly ME; Chapman D; Chen X
    Tissue Eng Part C Methods; 2017 Sep; 23(9):548-564. PubMed ID: 28726575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells.
    Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG
    Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of the polycation polyethyleneimine to improve the physical properties of alginate-hyaluronic acid hydrogel during fabrication of tissue repair scaffolds.
    Rajaram A; Schreyer DJ; Chen DX
    J Biomater Sci Polym Ed; 2015; 26(7):433-45. PubMed ID: 25661399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications.
    Naghieh S; Sarker MD; Abelseth E; Chen X
    J Mech Behav Biomed Mater; 2019 May; 93():183-193. PubMed ID: 30802775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential impact of polyethylenimine on biological behavior of 3D-printed alginate scaffolds.
    Khoshnood N; Zamanian A; Abbasi M
    Int J Biol Macromol; 2021 May; 178():19-28. PubMed ID: 33636258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues.
    Freeman FE; Kelly DJ
    Sci Rep; 2017 Dec; 7(1):17042. PubMed ID: 29213126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
    Contessi Negrini N; Celikkin N; Tarsini P; Farè S; Święszkowski W
    Biofabrication; 2020 Jan; 12(2):025001. PubMed ID: 31715587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting with alginate-gelatin hydrogel.
    Koch F; Thaden O; Conrad S; Tröndle K; Finkenzeller G; Zengerle R; Kartmann S; Zimmermann S; Koltay P
    J Mech Behav Biomed Mater; 2022 Jun; 130():105219. PubMed ID: 35413680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications.
    Ning L; Sun H; Lelong T; Guilloteau R; Zhu N; Schreyer DJ; Chen X
    Biofabrication; 2018 Jun; 10(3):035014. PubMed ID: 29911990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds.
    Sultan S; Mathew AP
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds.
    Mondschein RJ; Kanitkar A; Williams CB; Verbridge SS; Long TE
    Biomaterials; 2017 Sep; 140():170-188. PubMed ID: 28651145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of tissue formed in vivo are affected by 3D-bioplotted scaffold microarchitecture and correlate with ECM collagen fiber alignment.
    Huebner P; Warren PB; Chester D; Spang JT; Brown AC; Fisher MB; Shirwaiker RA
    Connect Tissue Res; 2020 Mar; 61(2):190-204. PubMed ID: 31345062
    [No Abstract]   [Full Text] [Related]  

  • 20. A 3D bioprinted in situ conjugated-co-fabricated scaffold for potential bone tissue engineering applications.
    Sithole MN; Kumar P; du Toit LC; Marimuthu T; Choonara YE; Pillay V
    J Biomed Mater Res A; 2018 May; 106(5):1311-1321. PubMed ID: 29316290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.