These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29414469)

  • 1. Physico-chemical characterization and biocompatibility of hydroxyapatite derived from fish waste.
    Yamamura H; da Silva VHP; Ruiz PLM; Ussui V; Lazar DRR; Renno ACM; Ribeiro DA
    J Mech Behav Biomed Mater; 2018 Apr; 80():137-142. PubMed ID: 29414469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physico-chemical characterization and biological response of Labeo rohita-derived hydroxyapatite scaffold.
    Mondal S; Mondal A; Mandal N; Mondal B; Mukhopadhyay SS; Dey A; Singh S
    Bioprocess Biosyst Eng; 2014 Jul; 37(7):1233-40. PubMed ID: 24288117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold.
    Panda NN; Pramanik K; Sukla LB
    Bioprocess Biosyst Eng; 2014 Mar; 37(3):433-40. PubMed ID: 23846299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts.
    Shi P; Liu M; Fan F; Yu C; Lu W; Du M
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():706-712. PubMed ID: 29853142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced extraction of hydroxyapatite from bighead carp (Aristichthys nobilis) scales using deep eutectic solvent.
    Liu Y; Li J; Wang D; Yang F; Zhang L; Ji S; Wang S
    J Food Sci; 2020 Jan; 85(1):150-156. PubMed ID: 31877234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound-assisted green economic synthesis of hydroxyapatite nanoparticles using eggshell biowaste and study of mechanical and biological properties for orthopedic applications.
    Ingole VH; Hany Hussein K; Kashale AA; Ghule K; Vuherer T; Kokol V; Chang JY; Ling YC; Vinchurkar A; Dhakal HN; Ghule AV
    J Biomed Mater Res A; 2017 Nov; 105(11):2935-2947. PubMed ID: 28639437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells.
    Dey S; Das M; Balla VK
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():336-9. PubMed ID: 24863233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of hydroxyapatite/biopolymer biomaterials. I. Microporous composites from solidified emulsions.
    Ritzoulis C; Scoutaris N; Demetriou E; Papademetriou K; Kokkou S; Stavroulias S; Panayiotou C
    J Biomed Mater Res A; 2004 Dec; 71(4):675-84. PubMed ID: 15514954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural properties of silver doped hydroxyapatite and their biocompatibility.
    Ciobanu CS; Iconaru SL; Pasuk I; Vasile BS; Lupu AR; Hermenean A; Dinischiotu A; Predoi D
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1395-402. PubMed ID: 23827587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.
    Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption.
    Qi C; Zhu YJ; Lu BQ; Zhao XY; Zhao J; Chen F; Wu J
    Chemistry; 2013 Apr; 19(17):5332-41. PubMed ID: 23460360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of a biphasic porous bioceramic by heating bovine cancellous bone with Na4P2O7.10H2O addition.
    Lin FH; Liao CJ; Chen KS; Sun JS
    Biomaterials; 1999 Mar; 20(5):475-84. PubMed ID: 10204990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inorganic apatite nanomaterial: Modified surface phenomena and its role in developing collagen based polymeric bio-composite (Coll-PLGA/HAp) for biological applications.
    Selvaraju S; Ramalingam S; Rao JR
    Colloids Surf B Biointerfaces; 2018 Dec; 172():734-742. PubMed ID: 30248644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of nano hydroxyapatite from Hypopthalmichthys molitrix (silver carp) bone waste by two different methods: a comparative biophysical and in vitro evaluation on osteoblast MG63 cell lines.
    Acharya P; Kupendra M; Fasim A; Anantharaju KS; Kottam N; Murthy VK; More SS
    Biotechnol Lett; 2022 Oct; 44(10):1175-1188. PubMed ID: 35997914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of hydroxyapatite nanoparticles mimicking biological apatite from eggshells for bone-tissue engineering.
    Nga NK; Thuy Chau NT; Viet PH
    Colloids Surf B Biointerfaces; 2018 Dec; 172():769-778. PubMed ID: 30266011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering.
    Nga NK; Giang LT; Huy TQ; Viet PH; Migliaresi C
    Colloids Surf B Biointerfaces; 2014 Apr; 116():666-73. PubMed ID: 24274938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo biological performance of hydroxyapatite from fish waste.
    Prado JPDS; Yamamura H; Magri AMP; Ruiz PLM; Prado JLDS; Rennó ACM; Ribeiro DA; Granito RN
    J Mater Sci Mater Med; 2021 Aug; 32(9):109. PubMed ID: 34453621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation.
    Smolen D; Chudoba T; Malka I; Kedzierska A; Lojkowski W; Swieszkowski W; Kurzydlowski KJ; Kolodziejczyk-Mierzynska M; Lewandowska-Szumiel M
    Int J Nanomedicine; 2013; 8():653-68. PubMed ID: 23431124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and characterization of a novel porous small intestine submucosa-hydroxyapatite scaffold for bone regeneration.
    Castilla Bolaños MA; Buttigieg J; Briceño Triana JC
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():519-525. PubMed ID: 28024616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility.
    Kemençe N; Bölgen N
    J Tissue Eng Regen Med; 2017 Jan; 11(1):20-33. PubMed ID: 23997022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.