These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29414698)

  • 21. Transcriptional activity and substrate recognition of cyclin T2 from P-TEFb.
    Kurosu T; Zhang F; Peterlin BM
    Gene; 2004 Dec; 343(1):173-9. PubMed ID: 15563843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 7SK small nuclear RNA, a multifunctional transcriptional regulatory RNA with gene-specific features.
    Egloff S; Studniarek C; Kiss T
    Transcription; 2018; 9(2):95-101. PubMed ID: 28820318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. VP16 and ubiquitin; binding of P-TEFb via its activation domain and ubiquitin facilitates elongation of transcription of target genes.
    Kurosu T; Peterlin BM
    Curr Biol; 2004 Jun; 14(12):1112-6. PubMed ID: 15203006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE.
    Paparidis NF; Durvale MC; Canduri F
    Mol Biosyst; 2017 Jan; 13(2):246-276. PubMed ID: 27833949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An alpha-herpesvirus employs host HEXIM1 to promote viral transcription.
    Wu Y; Sun A; Yang Q; Wang M; Tian B; Yang Q; Jia R; Chen S; Ou X; Huang J; Sun D; Zhu D; Liu M; Zhang S; Zhao X-X; He Y; Wu Z; Cheng A
    J Virol; 2024 Mar; 98(3):e0139223. PubMed ID: 38363111
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Establishment of a Hyperactive Structure Allows the Tumour Suppressor Protein p53 to Function through P-TEFb during Limited CDK9 Kinase Inhibition.
    Albert TK; Antrecht C; Kremmer E; Meisterernst M
    PLoS One; 2016; 11(1):e0146648. PubMed ID: 26745862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The multi-tasking P-TEFb complex.
    Brès V; Yoh SM; Jones KA
    Curr Opin Cell Biol; 2008 Jun; 20(3):334-40. PubMed ID: 18513937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromatin remodeller Fun30
    Lee J; Choi ES; Seo HD; Kang K; Gilmore JM; Florens L; Washburn MP; Choe J; Workman JL; Lee D
    Nat Commun; 2017 Feb; 8():14527. PubMed ID: 28218250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro.
    Wada T; Takagi T; Yamaguchi Y; Watanabe D; Handa H
    EMBO J; 1998 Dec; 17(24):7395-403. PubMed ID: 9857195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation.
    Kizer KO; Phatnani HP; Shibata Y; Hall H; Greenleaf AL; Strahl BD
    Mol Cell Biol; 2005 Apr; 25(8):3305-16. PubMed ID: 15798214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. P-TEFb regulation of transcription termination factor Xrn2 revealed by a chemical genetic screen for Cdk9 substrates.
    Sansó M; Levin RS; Lipp JJ; Wang VY; Greifenberg AK; Quezada EM; Ali A; Ghosh A; Larochelle S; Rana TM; Geyer M; Tong L; Shokat KM; Fisher RP
    Genes Dev; 2016 Jan; 30(1):117-31. PubMed ID: 26728557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Balanced between order and disorder: a new phase in transcription elongation control and beyond.
    Lu H; Liu R; Zhou Q
    Transcription; 2019 Jun; 10(3):157-163. PubMed ID: 30663929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ubiquitin-Dependent Turnover of MYC Antagonizes MYC/PAF1C Complex Accumulation to Drive Transcriptional Elongation.
    Jaenicke LA; von Eyss B; Carstensen A; Wolf E; Xu W; Greifenberg AK; Geyer M; Eilers M; Popov N
    Mol Cell; 2016 Jan; 61(1):54-67. PubMed ID: 26687678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substrate Specificity of the Kinase P-TEFb towards the RNA Polymerase II C-Terminal Domain.
    Gibbs EB; Laremore TN; Usher GA; Portz B; Cook EC; Showalter SA
    Biophys J; 2017 Nov; 113(9):1909-1911. PubMed ID: 28992937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. P-TEFb, the super elongation complex and mediator regulate a subset of non-paused genes during early Drosophila embryo development.
    Dahlberg O; Shilkova O; Tang M; Holmqvist PH; Mannervik M
    PLoS Genet; 2015 Feb; 11(2):e1004971. PubMed ID: 25679530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Post-Translational Modification, Phase Separation, and Robust Gene Transcription.
    Singh HR; Ostwal YB
    Trends Genet; 2019 Feb; 35(2):89-92. PubMed ID: 30477958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crosstalk between the RNA Methylation and Histone-Binding Activities of MePCE Regulates P-TEFb Activation on Chromatin.
    Shelton SB; Shah NM; Abell NS; Devanathan SK; Mercado M; Xhemalçe B
    Cell Rep; 2018 Feb; 22(6):1374-1383. PubMed ID: 29425494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Runx1 binds positive transcription elongation factor b and represses transcriptional elongation by RNA polymerase II: possible mechanism of CD4 silencing.
    Jiang H; Zhang F; Kurosu T; Peterlin BM
    Mol Cell Biol; 2005 Dec; 25(24):10675-83. PubMed ID: 16314494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interplay between 7SK snRNA and oppositely charged regions in HEXIM1 direct the inhibition of P-TEFb.
    Barboric M; Kohoutek J; Price JP; Blazek D; Price DH; Peterlin BM
    EMBO J; 2005 Dec; 24(24):4291-303. PubMed ID: 16362050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptional elongation requires DNA break-induced signalling.
    Bunch H; Lawney BP; Lin YF; Asaithamby A; Murshid A; Wang YE; Chen BP; Calderwood SK
    Nat Commun; 2015 Dec; 6():10191. PubMed ID: 26671524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.