These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29414719)

  • 1. Forward and Reverse Waves: Modeling Distortion Products in the Intracochlear Fluid Pressure.
    Bowling T; Meaud J
    Biophys J; 2018 Feb; 114(3):747-757. PubMed ID: 29414719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Intracochlear Pressure Measurements from Two Cochlear Locations: Propagation of Distortion Products in Gerbil.
    Dong W
    J Assoc Res Otolaryngol; 2017 Apr; 18(2):209-225. PubMed ID: 27909837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the 2f
    Wen H; Bowling T; Meaud J
    Hear Res; 2018 Aug; 365():127-140. PubMed ID: 29801982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse cochlear propagation in the intact cochlea of the gerbil: evidence for slow traveling waves.
    Meenderink SW; van der Heijden M
    J Neurophysiol; 2010 Mar; 103(3):1448-55. PubMed ID: 20089817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allen-Fahey and related experiments support the predominance of cochlear slow-wave otoacoustic emissions.
    Shera CA; Tubis A; Talmadge CL; de Boer E; Fahey PF; Guinan JJ
    J Acoust Soc Am; 2007 Mar; 121(3):1564-75. PubMed ID: 17407894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Group delay of acoustic emissions in the ear.
    Ren T; He W; Scott M; Nuttall AL
    J Neurophysiol; 2006 Nov; 96(5):2785-91. PubMed ID: 16899644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast reverse propagation of sound in the living cochlea.
    He W; Fridberger A; Porsov E; Ren T
    Biophys J; 2010 Jun; 98(11):2497-505. PubMed ID: 20513393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracochlear distortion products are broadly generated by outer hair cells but their contributions to otoacoustic emissions are spatially restricted.
    Bowling T; Wen H; Meenderink SWF; Dong W; Meaud J
    Sci Rep; 2021 Jul; 11(1):13651. PubMed ID: 34211051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse wave propagation in the cochlea.
    He W; Fridberger A; Porsov E; Grosh K; Ren T
    Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2729-33. PubMed ID: 18272498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-tone distortion in intracochlear pressure.
    Dong W; Olson ES
    J Acoust Soc Am; 2005 May; 117(5):2999-3015. PubMed ID: 15957770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse transmission along the ossicular chain in gerbil.
    Dong W; Decraemer WF; Olson ES
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):447-59. PubMed ID: 22466074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supporting evidence for reverse cochlear traveling waves.
    Dong W; Olson ES
    J Acoust Soc Am; 2008 Jan; 123(1):222-40. PubMed ID: 18177153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Middle ear forward and reverse transmission in gerbil.
    Dong W; Olson ES
    J Neurophysiol; 2006 May; 95(5):2951-61. PubMed ID: 16481455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmission of oto-acoustic emissions within the cochlea.
    Sichel JY; Freeman S; Perez R; Sohmer H
    J Basic Clin Physiol Pharmacol; 2006; 17(3):143-57. PubMed ID: 17598306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How does the inner ear generate distortion product otoacoustic emissions?. Results from a realistic model of the human cochlea.
    Vetesnik A; Nobili R; Gummer A
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):347-52. PubMed ID: 17065828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bandpass Shape of Distortion-Product Otoacoustic Emission Ratio Functions Reflects Cochlear Frequency Tuning in Normal-Hearing Mice.
    Dewey JB; Shera CA
    J Assoc Res Otolaryngol; 2023 Jun; 24(3):305-324. PubMed ID: 37072566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Level dependence of the nonlinear-distortion component of distortion-product otoacoustic emissions in humans.
    Zelle D; Thiericke JP; Dalhoff E; Gummer AW
    J Acoust Soc Am; 2015 Dec; 138(6):3475-90. PubMed ID: 26723305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subharmonic distortion in ear canal pressure and intracochlear pressure and motion.
    Huang S; Dong W; Olson ES
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):461-71. PubMed ID: 22526734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal response to cochlear distortion products in the anteroventral cochlear nucleus of the gerbil.
    Faulstich M; Kössl M
    J Acoust Soc Am; 1999 Jan; 105(1):491-502. PubMed ID: 9921673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensating for ear-canal acoustics when measuring otoacoustic emissions.
    Charaziak KK; Shera CA
    J Acoust Soc Am; 2017 Jan; 141(1):515. PubMed ID: 28147590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.