These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29414751)

  • 1. Dark fermentation process as pretreatment for a sustainable denaturation of asbestos containing wastes.
    Spasiano D
    J Hazard Mater; 2018 May; 349():45-50. PubMed ID: 29414751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustainable bio-hydrothermal sequencing treatment for asbestos-cement wastes.
    Spasiano D; Luongo V; Race M; Petrella A; Fiore S; Apollonio C; Pirozzi F; Fratino U; Piccinni AF
    J Hazard Mater; 2019 Feb; 364():256-263. PubMed ID: 30368063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combined system for asbestos-cement waste degradation by dark fermentation and resulting supernatant valorization in anaerobic digestion.
    Trancone G; Spasiano D; Race M; Luongo V; Petrella A; Pirozzi F; Fratino U; Piccinni AF
    Chemosphere; 2022 Aug; 300():134500. PubMed ID: 35395263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of initial pH on the production of volatile fatty acids and hydrogen during dark fermentation of kitchen waste.
    Slezak R; Grzelak J; Krzystek L; Ledakowicz S
    Environ Technol; 2021 Nov; 42(27):4269-4278. PubMed ID: 32255721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.
    Yin J; Wang K; Yang Y; Shen D; Wang M; Mo H
    Bioresour Technol; 2014 Nov; 171():323-9. PubMed ID: 25218204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of initial organic load of the kitchen waste on the production of VFA and H
    Slezak R; Grzelak J; Krzystek L; Ledakowicz S
    Waste Manag; 2017 Oct; 68():610-617. PubMed ID: 28642076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Change of carcinogenic chrysotile fibers in the asbestos cement (eternit) to harmless waste by artificial carbonatization: petrological and technological results.
    Radvanec M; Tuček L; Derco J; Čechovská K; Németh Z
    J Hazard Mater; 2013 May; 252-253():390-400. PubMed ID: 23571021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel process for volatile fatty acids production from syngas by integrating with mesophilic alkaline fermentation of waste activated sludge.
    Rao Y; Wan J; Liu Y; Angelidaki I; Zhang S; Zhang Y; Luo G
    Water Res; 2018 Aug; 139():372-380. PubMed ID: 29665509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid.
    Nam SN; Jeong S; Lim H
    J Hazard Mater; 2014 Jan; 265():151-7. PubMed ID: 24361492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of enzymatic pretreatment on solubilization and volatile fatty acid production in fermentation of food waste.
    Kim HJ; Choi YG; Kim GD; Kim SH; Chung TH
    Water Sci Technol; 2005; 52(10-11):51-9. PubMed ID: 16459776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation--Economic and energy assessment.
    Bonk F; Bastidas-Oyanedel JR; Schmidt JE
    Waste Manag; 2015 Jun; 40():82-91. PubMed ID: 25840736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation.
    Singhania RR; Patel AK; Christophe G; Fontanille P; Larroche C
    Bioresour Technol; 2013 Oct; 145():166-74. PubMed ID: 23339903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic fermentation of organic solid wastes: volatile fatty acid production and separation.
    Yesil H; Tugtas AE; Bayrakdar A; Calli B
    Water Sci Technol; 2014; 69(10):2132-8. PubMed ID: 24845331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of melanoidins on acidogenic fermentation of food waste to produce volatility fatty acids.
    Yin J; Liu J; Chen T; Long Y; Shen D
    Bioresour Technol; 2019 Jul; 284():121-127. PubMed ID: 30927649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of continuous dark fermentative hydrogen production in an anaerobic up-flow column bioreactor.
    Alexandropoulou M; Antonopoulou G; Lyberatos G
    Chemosphere; 2022 Apr; 293():133527. PubMed ID: 34998845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor.
    Wainaina S; Parchami M; Mahboubi A; Horváth IS; Taherzadeh MJ
    Bioresour Technol; 2019 Feb; 274():329-334. PubMed ID: 30529480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal conversion of chrysotile asbestos using near supercritical conditions.
    Anastasiadou K; Axiotis D; Gidarakos E
    J Hazard Mater; 2010 Jul; 179(1-3):926-32. PubMed ID: 20427128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic digestion of yard waste with hydrothermal pretreatment.
    Li W; Zhang G; Zhang Z; Xu G
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2670-81. PubMed ID: 24425302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation tests to assess occupational exposure to airborne asbestos from artificially weathered asphalt-based roofing products.
    Sheehan P; Mowat F; Weidling R; Floyd M
    Ann Occup Hyg; 2010 Nov; 54(8):880-92. PubMed ID: 20923966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.