These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 29414784)
1. Coenzyme M biosynthesis in bacteria involves phosphate elimination by a functionally distinct member of the aspartase/fumarase superfamily. Partovi SE; Mus F; Gutknecht AE; Martinez HA; Tripet BP; Lange BM; DuBois JL; Peters JW J Biol Chem; 2018 Apr; 293(14):5236-5246. PubMed ID: 29414784 [TBL] [Abstract][Full Text] [Related]
2. The pathway for coenzyme M biosynthesis in bacteria. Wu HH; Pun MD; Wise CE; Streit BR; Mus F; Berim A; Kincannon WM; Islam A; Partovi SE; Gang DR; DuBois JL; Lubner CE; Berkman CE; Lange BM; Peters JW Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2207190119. PubMed ID: 36037354 [TBL] [Abstract][Full Text] [Related]
3. Evidence that a linear megaplasmid encodes enzymes of aliphatic alkene and epoxide metabolism and coenzyme M (2-mercaptoethanesulfonate) biosynthesis in Xanthobacter strain Py2. Krum JG; Ensign SA J Bacteriol; 2001 Apr; 183(7):2172-7. PubMed ID: 11244054 [TBL] [Abstract][Full Text] [Related]
4. Shotgun proteomics of Xanthobacter autotrophicus Py2 reveals proteins specific to growth on propylene. Broberg CA; Clark DD Arch Microbiol; 2010 Nov; 192(11):945-57. PubMed ID: 20844868 [TBL] [Abstract][Full Text] [Related]
5. Identification of coenzyme M biosynthetic 2-phosphosulfolactate phosphatase. A member of a new class of Mg(2+)-dependent acid phosphatases. Graham DE; Graupner M; Xu H; White RH Eur J Biochem; 2001 Oct; 268(19):5176-88. PubMed ID: 11589710 [TBL] [Abstract][Full Text] [Related]
6. Getting a handle on the role of coenzyme M in alkene metabolism. Krishnakumar AM; Sliwa D; Endrizzi JA; Boyd ES; Ensign SA; Peters JW Microbiol Mol Biol Rev; 2008 Sep; 72(3):445-56. PubMed ID: 18772284 [TBL] [Abstract][Full Text] [Related]
7. Aspartase/fumarase superfamily: a common catalytic strategy involving general base-catalyzed formation of a highly stabilized aci-carboxylate intermediate. Puthan Veetil V; Fibriansah G; Raj H; Thunnissen AM; Poelarends GJ Biochemistry; 2012 May; 51(21):4237-43. PubMed ID: 22551392 [TBL] [Abstract][Full Text] [Related]
8. Characterization of five catalytic activities associated with the NADPH:2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate] oxidoreductase/carboxylase of the Xanthobacter strain Py2 epoxide carboxylase system. Clark DD; Allen JR; Ensign SA Biochemistry; 2000 Feb; 39(6):1294-304. PubMed ID: 10684609 [TBL] [Abstract][Full Text] [Related]
9. The structural determination of phosphosulfolactate synthase from Methanococcus jannaschii at 1.7-A resolution: an enolase that is not an enolase. Wise EL; Graham DE; White RH; Rayment I J Biol Chem; 2003 Nov; 278(46):45858-63. PubMed ID: 12952952 [TBL] [Abstract][Full Text] [Related]
10. Heterologous expression of bacterial Epoxyalkane:Coenzyme M transferase and inducible coenzyme M biosynthesis in Xanthobacter strain Py2 and Rhodococcus rhodochrous B276. Krum JG; Ensign SA J Bacteriol; 2000 May; 182(9):2629-34. PubMed ID: 10762269 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of the nitrosuccinate lyase CreD in complex with fumarate provides insights into the catalytic mechanism for nitrous acid elimination. Katsuyama Y; Sato Y; Sugai Y; Higashiyama Y; Senda M; Senda T; Ohnishi Y FEBS J; 2018 Apr; 285(8):1540-1555. PubMed ID: 29505698 [TBL] [Abstract][Full Text] [Related]
12. Stimulation of Erwinia sp. fumarase and aspartase synthesis by changing medium components. Bagdasaryan ZN; Aleksanyan GA; Mirzoyan AM; Roseiro JC; Bagdasaryan SN Appl Biochem Biotechnol; 2005 May; 125(2):113-26. PubMed ID: 15858235 [TBL] [Abstract][Full Text] [Related]
13. [Role of fumarase in the induction of aspartate-ammonium lyase of Pseudomonas fluorescens]. Hubert JC; Hornsperger JM; Wurtz B C R Acad Hebd Seances Acad Sci D; 1975 Jun; 280(24):2797-9. PubMed ID: 808318 [TBL] [Abstract][Full Text] [Related]
14. Roles of the redox-active disulfide and histidine residues forming a catalytic dyad in reactions catalyzed by 2-ketopropyl coenzyme M oxidoreductase/carboxylase. Kofoed MA; Wampler DA; Pandey AS; Peters JW; Ensign SA J Bacteriol; 2011 Sep; 193(18):4904-13. PubMed ID: 21764916 [TBL] [Abstract][Full Text] [Related]
15. Characterization of 2-bromoethanesulfonate as a selective inhibitor of the coenzyme m-dependent pathway and enzymes of bacterial aliphatic epoxide metabolism. Boyd JM; Ellsworth A; Ensign SA J Bacteriol; 2006 Dec; 188(23):8062-9. PubMed ID: 16997966 [TBL] [Abstract][Full Text] [Related]
16. Convergent evolution of coenzyme M biosynthesis in the Methanosarcinales: cysteate synthase evolved from an ancestral threonine synthase. Graham DE; Taylor SM; Wolf RZ; Namboori SC Biochem J; 2009 Dec; 424(3):467-78. PubMed ID: 19761441 [TBL] [Abstract][Full Text] [Related]
17. 3-Carbanionic substrate analogues bind very tightly to fumarase and aspartase. Porter DJ; Bright HJ J Biol Chem; 1980 May; 255(10):4772-80. PubMed ID: 7372610 [TBL] [Abstract][Full Text] [Related]
18. Structural basis for CO2 fixation by a novel member of the disulfide oxidoreductase family of enzymes, 2-ketopropyl-coenzyme M oxidoreductase/carboxylase. Nocek B; Jang SB; Jeong MS; Clark DD; Ensign SA; Peters JW Biochemistry; 2002 Oct; 41(43):12907-13. PubMed ID: 12390015 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of thermostable aspartase from Bacillus sp. YM55-1: structure-based exploration of functional sites in the aspartase family. Fujii T; Sakai H; Kawata Y; Hata Y J Mol Biol; 2003 May; 328(3):635-54. PubMed ID: 12706722 [TBL] [Abstract][Full Text] [Related]
20. Identification of coenzyme M biosynthetic phosphosulfolactate synthase: a new family of sulfonate-biosynthesizing enzymes. Graham DE; Xu H; White RH J Biol Chem; 2002 Apr; 277(16):13421-9. PubMed ID: 11830598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]