These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Continuous Sorting of Cells Based on Differential P Selectin Glycoprotein Ligand Expression Using Molecular Adhesion. Tasadduq B; McFarland B; Islam M; Alexeev A; Sarioglu AF; Sulchek T Anal Chem; 2017 Nov; 89(21):11545-11551. PubMed ID: 28930450 [TBL] [Abstract][Full Text] [Related]
3. Adhesion-based high-throughput label-free cell sorting using ridged microfluidic channels. Chrit FE; Li P; Sulchek T; Alexeev A Soft Matter; 2024 Feb; 20(8):1913-1921. PubMed ID: 38323349 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic Platform to Transduce Cell Viability to Distinct Flow Pathways for High-Accuracy Sensing. Chrit FE; Raj A; Young KM; Stone NE; Shankles PG; Lokireddy K; Flowers C; Waller EK; Alexeev A; Sulchek T ACS Sens; 2021 Oct; 6(10):3789-3799. PubMed ID: 34546721 [TBL] [Abstract][Full Text] [Related]
5. A novel automatic segmentation and tracking method to measure cellular dielectrophoretic mobility from individual cell trajectories for high throughput assay. Choi S; Lee H; Lee S; Park I; Kim YS; Key J; Lee SY; Yang S; Lee SW Comput Methods Programs Biomed; 2020 Oct; 195():105662. PubMed ID: 32712504 [TBL] [Abstract][Full Text] [Related]
6. Simplified fluid-structure coupled analysis of particle movement for designing of microfluidic cell sorter. Takagi Y; Kotev V; Yano K Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3229-32. PubMed ID: 26736980 [TBL] [Abstract][Full Text] [Related]
7. Deformability- and size-based microcapsule sorting. Vesperini D; Chaput O; Munier N; Maire P; Edwards-Lévy F; Salsac AV; Le Goff A Med Eng Phys; 2017 Oct; 48():68-74. PubMed ID: 28728866 [TBL] [Abstract][Full Text] [Related]
8. Stiffness dependent separation of cells in a microfluidic device. Wang G; Mao W; Byler R; Patel K; Henegar C; Alexeev A; Sulchek T PLoS One; 2013; 8(10):e75901. PubMed ID: 24146787 [TBL] [Abstract][Full Text] [Related]
9. On-chip analysis of magnetically labeled cells with integrated cell sorting and counting techniques. Zhang H; Ding W; Li S; Ya S; Li F; Qiu B Talanta; 2020 Dec; 220():121351. PubMed ID: 32928389 [TBL] [Abstract][Full Text] [Related]
10. A velocity program using the Kanade-Lucas-Tomasi feature-tracking algorithm with demonstration for pressure and electroosmosis conditions. Devasagayam J; Bosma R; Collier CM Electrophoresis; 2022 Apr; 43(7-8):865-878. PubMed ID: 35049075 [TBL] [Abstract][Full Text] [Related]
11. Recent microfluidic devices for studying gamete and embryo biomechanics. Lai D; Takayama S; Smith GD J Biomech; 2015 Jun; 48(9):1671-8. PubMed ID: 25801423 [TBL] [Abstract][Full Text] [Related]
12. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells. Wang X; Liedert C; Liedert R; Papautsky I Lab Chip; 2016 May; 16(10):1821-30. PubMed ID: 27050341 [TBL] [Abstract][Full Text] [Related]
13. Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices. Didar TF; Tabrizian M Lab Chip; 2010 Nov; 10(22):3043-53. PubMed ID: 20877893 [TBL] [Abstract][Full Text] [Related]
14. A generic label-free microfluidic microobject sorter using a magnetic elastic diverter. Zhang J; Onaizah O; Sadri A; Diller E Biomed Microdevices; 2017 Jun; 19(2):43. PubMed ID: 28488167 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic Sorting of Cells by Viability Based on Differences in Cell Stiffness. Islam M; Brink H; Blanche S; DiPrete C; Bongiorno T; Stone N; Liu A; Philip A; Wang G; Lam W; Alexeev A; Waller EK; Sulchek T Sci Rep; 2017 May; 7(1):1997. PubMed ID: 28515450 [TBL] [Abstract][Full Text] [Related]
16. Applications of machine learning for simulations of red blood cells in microfluidic devices. Bachratý H; Bachratá K; Chovanec M; Jančigová I; Smiešková M; Kovalčíková K BMC Bioinformatics; 2020 Mar; 21(Suppl 2):90. PubMed ID: 32164547 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic filter device with nylon mesh membranes efficiently dissociates cell aggregates and digested tissue into single cells. Qiu X; Lombardo JA; Westerhof TM; Pennell M; Ng A; Alshetaiwi H; Luna BM; Nelson EL; Kessenbrock K; Hui EE; Haun JB Lab Chip; 2018 Sep; 18(18):2776-2786. PubMed ID: 30090895 [TBL] [Abstract][Full Text] [Related]
18. A valve-based microfluidic device for on-chip single cell treatments. Sun Y; Cai B; Wei X; Wang Z; Rao L; Meng QF; Liao Q; Liu W; Guo S; Zhao X Electrophoresis; 2019 Mar; 40(6):961-968. PubMed ID: 30155963 [TBL] [Abstract][Full Text] [Related]
19. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy. Pandiyan VP; John R Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958 [TBL] [Abstract][Full Text] [Related]
20. Get to Understand More from Single-Cells: Current Studies of Microfluidic-Based Techniques for Single-Cell Analysis. Lo SJ; Yao DJ Int J Mol Sci; 2015 Jul; 16(8):16763-77. PubMed ID: 26213918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]