These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29415019)

  • 1. Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of Bio-Nano Things.
    Kuscu M; Akan OB
    PLoS One; 2018; 13(2):e0192202. PubMed ID: 29415019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum Likelihood Detection With Ligand Receptors for Diffusion-Based Molecular Communications in Internet of Bio-Nano Things.
    Kuscu M; Akan OB
    IEEE Trans Nanobioscience; 2018 Mar; 17(1):44-54. PubMed ID: 29570074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive Reactive Receiver Modeling for Diffusive Molecular Communication Systems: Reversible Binding, Molecule Degradation, and Finite Number of Receptors.
    Ahmadzadeh A; Arjmandi H; Burkovski A; Schober R
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):713-727. PubMed ID: 27654883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thresholdless Detection of Symbols in Nano-Communication Systems.
    Sharma S; Deka K; Bhatia V
    IEEE Trans Nanobioscience; 2020 Apr; 19(2):259-266. PubMed ID: 31796412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and microfluidic analysis of graphene-based molecular communication receiver for Internet of Nano Things (IoNT).
    Kuscu M; Ramezani H; Dinc E; Akhavan S; Akan OB
    Sci Rep; 2021 Oct; 11(1):19600. PubMed ID: 34599208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shannon Meets Fick on the Microfluidic Channel: Diffusion Limit to Sum Broadcast Capacity for Molecular Communication.
    Bicen AO; Lehtomaki JJ; Akyildiz IF
    IEEE Trans Nanobioscience; 2018 Mar; 17(1):88-94. PubMed ID: 29570079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic Nanoparticle-Based Molecular Communication in Microfluidic Environments.
    Wicke W; Ahmadzadeh A; Jamali V; Unterweger H; Alexiou C; Schober R
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):156-169. PubMed ID: 30703034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Exact Performance Analysis of Molecular Communication via Diffusion for Internet of Bio-Nano Things.
    Dissanayake MB; Ekanayake N
    IEEE Trans Nanobioscience; 2021 Jul; 20(3):291-295. PubMed ID: 33835921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytic modelling of passive microfluidic mixers.
    Bonament A; Prel A; Sallese JM; Lallement C; Madec M
    Math Biosci Eng; 2022 Feb; 19(4):3892-3908. PubMed ID: 35341279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the capacity of diffusion-based molecular communications with SiNW FET-based receiver.
    Kuscu M; Akan OB
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3043-3047. PubMed ID: 28268953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Information Theoretical Analysis of Human Insulin-Glucose System Toward the Internet of Bio-Nano Things.
    Abbasi NA; Akan OB
    IEEE Trans Nanobioscience; 2017 Dec; 16(8):783-791. PubMed ID: 29028203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Complexity Channel Codes for Reliable Molecular Communication via Diffusion.
    Figueiredo S; Souto N; Cercas F
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical Solution of the Time-Dependent Microfluidic Poiseuille Flow in Rectangular Channel Cross-Sections and its Numerical Implementation in Microsoft Excel.
    Risch P; Helmer D; Kotz F; Rapp BE
    Biosensors (Basel); 2019 May; 9(2):. PubMed ID: 31137723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving adaptive receivers performance in molecular communication via diffusion.
    Shahbazi A; Jamshidi A
    IET Nanobiotechnol; 2019 Jun; 13(4):441-448. PubMed ID: 31171750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical Limits on Multiuser Molecular Communication in Internet of Nano-Bio Things.
    Dinc E; Akan OB
    IEEE Trans Nanobioscience; 2017 Jun; 16(4):266-270. PubMed ID: 28422687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB.
    Munir A; Waseem H; Williams MR; Stedtfeld RD; Gulari E; Tiedje JM; Hashsham SA
    Microarrays (Basel); 2017 May; 6(2):. PubMed ID: 28555058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport.
    Carroll GT; Devereux PD; Ku DN; McGloughlin TM; Walsh MT
    Biomed Eng Online; 2010 Jul; 9():34. PubMed ID: 20642816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo Analysis of Molecule Absorption Probabilities in Diffusion-Based Nanoscale Communication Systems with Multiple Receivers.
    Arifler D; Arifler D
    IEEE Trans Nanobioscience; 2017 Apr; 16(3):157-165. PubMed ID: 28368824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical characterization and optimization of the microfluidics for nanowire biosensors.
    Kim DR; Zheng X
    Nano Lett; 2008 Oct; 8(10):3233-7. PubMed ID: 18788786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel.
    Richter C; Kotz F; Giselbrecht S; Helmer D; Rapp BE
    Biomed Microdevices; 2016 Jun; 18(3):52. PubMed ID: 27233665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.