These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29415073)

  • 1. Urbanization may reduce the risk of frost damage to spring flowers: A case study of two shrub species in South Korea.
    Gim HJ; Ho CH; Kim J; Lee EJ
    PLoS One; 2018; 13(2):e0191428. PubMed ID: 29415073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States.
    Kimball KD; Davis ML; Weihrauch DM; Murray GL; Rancourt K
    Am J Bot; 2014 Sep; 101(9):1437-46. PubMed ID: 25253704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing frost risk associated with advanced citrus flowering dates in Kerman and Shiraz, Iran: 1960-2010.
    Fitchett JM; Grab SW; Thompson DI; Roshan G
    Int J Biometeorol; 2014 Oct; 58(8):1811-5. PubMed ID: 24429704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergent trends in the risk of spring frost damage to trees in Europe with recent warming.
    Ma Q; Huang JG; Hänninen H; Berninger F
    Glob Chang Biol; 2019 Jan; 25(1):351-360. PubMed ID: 30338890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancing frost dates have reduced frost risk among most North American angiosperms since 1980.
    Park IW; Ramirez-Parada T; Mazer SJ
    Glob Chang Biol; 2021 Jan; 27(1):165-176. PubMed ID: 33030240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change and spring frost damages for sweet cherries in Germany.
    Chmielewski FM; Götz KP; Weber KC; Moryson S
    Int J Biometeorol; 2018 Feb; 62(2):217-228. PubMed ID: 28965141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex climate-mediated effects of urbanization on plant reproductive phenology and frost risk.
    Park DS; Xie Y; Ellison AM; Lyra GM; Davis CC
    New Phytol; 2023 Sep; 239(6):2153-2165. PubMed ID: 36942966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing.
    Augspurger CK
    Ecology; 2013 Jan; 94(1):41-50. PubMed ID: 23600239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Will loss of snow cover during climatic warming expose New Zealand alpine plants to increased frost damage?
    Bannister P; Maegli T; Dickinson KJ; Halloy SR; Knight A; Lord JM; Mark AF; Spencer KL
    Oecologia; 2005 Jun; 144(2):245-56. PubMed ID: 15891822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of urbanization on spring and autumn phenology of deciduous trees in the Seoul Capital Area, South Korea.
    Jeong SJ; Park H; Ho CH; Kim J
    Int J Biometeorol; 2019 May; 63(5):627-637. PubMed ID: 30267322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk of spring frost to apple production under future climate scenarios: the role of phenological acclimation.
    Eccel E; Rea R; Caffarra A; Crisci A
    Int J Biometeorol; 2009 May; 53(3):273-86. PubMed ID: 19263089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changing risk of spring frost damage in grapevines due to climate change? A case study in the Swiss Rhone Valley.
    Meier M; Fuhrer J; Holzkämper A
    Int J Biometeorol; 2018 Jun; 62(6):991-1002. PubMed ID: 29368173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spring frost risk for regional apple production under a warmer climate.
    Unterberger C; Brunner L; Nabernegg S; Steininger KW; Steiner AK; Stabentheiner E; Monschein S; Truhetz H
    PLoS One; 2018; 13(7):e0200201. PubMed ID: 30044808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits.
    Hänninen H
    Tree Physiol; 2006 Jul; 26(7):889-98. PubMed ID: 16585034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenological change in a spring ephemeral: implications for pollination and plant reproduction.
    Gezon ZJ; Inouye DW; Irwin RE
    Glob Chang Biol; 2016 May; 22(5):1779-93. PubMed ID: 26833694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Floral freezing tolerance is tied to flowering time in North American woody plant species.
    Savage JA; Fakhreddine Q; Vandenheuvel B
    Ann Bot; 2024 Jul; ():. PubMed ID: 39066503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frost trends and their estimated impact on yield in the Australian wheatbelt.
    Zheng B; Chapman SC; Christopher JT; Frederiks TM; Chenu K
    J Exp Bot; 2015 Jun; 66(12):3611-23. PubMed ID: 25922479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Earlier flowering between 1962 and 2002 in agricultural varieties of white clover.
    Williams TA; Abberton MT
    Oecologia; 2004 Jan; 138(1):122-6. PubMed ID: 14557866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of late spring frost leaf damage and recovery in a European beech (Fagus sylvatica L.) stand in south-eastern Germany based on repeated digital photographs.
    Menzel A; Helm R; Zang C
    Front Plant Sci; 2015; 6():110. PubMed ID: 25759707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Risk assessment of frost damage to sugar beet simulated under cold and semi-arid environments.
    Deihimfard R; Rahimi-Moghaddam S; Chenu K
    Int J Biometeorol; 2019 Apr; 63(4):511-521. PubMed ID: 30756175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.