BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29415098)

  • 1. Arsenic Speciation and Availability in Orchard Soils Historically Contaminated with Lead Arsenate.
    Gamble AV; Givens AK; Sparks DL
    J Environ Qual; 2018 Jan; 47(1):121-128. PubMed ID: 29415098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and temporal variability of arsenic solid-state speciation in historically lead arsenate contaminated soils.
    Arai Y; Lanzirotti A; Sutton SR; Newville M; Dyer J; Sparks DL
    Environ Sci Technol; 2006 Feb; 40(3):673-9. PubMed ID: 16509302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecotoxicological study of arsenic and lead contaminated soils in former orchards at the Hanford Site, USA.
    Delistraty D; Yokel J
    Environ Toxicol; 2014 Jan; 29(1):10-20. PubMed ID: 21922631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E; Zagury GJ
    Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils.
    Bradham KD; Scheckel KG; Nelson CM; Seales PE; Lee GE; Hughes MF; Miller BW; Yeow A; Gilmore T; Serda SM; Harper S; Thomas DJ
    Environ Health Perspect; 2011 Nov; 119(11):1629-34. PubMed ID: 21749965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of hydrous ferric oxide, earthworms, and a hypertolerant plant on arsenic and iron bioavailability, fate, and transport in soils.
    Maki BC; Hodges KR; Ford SC; Sofield RM
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):27710-27723. PubMed ID: 27778268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenate sorption on two Chinese red soils evaluated with macroscopic measurements and extended X-ray absorption fine-structure spectroscopy.
    Luo L; Zhang S; Shan XQ; Jiang W; Zhu YG; Liu T; Xie YN; McLaren RG
    Environ Toxicol Chem; 2006 Dec; 25(12):3118-24. PubMed ID: 17220079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus-arsenic interactions in variable-charge soils in relation to arsenic mobility and bioavailability.
    Bolan N; Mahimairaja S; Kunhikrishnan A; Choppala G
    Sci Total Environ; 2013 Oct; 463-464():1154-62. PubMed ID: 23639210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro gastrointestinal bioavailability of arsenic in soils collected near CCA-treated utility poles.
    Pouschat P; Zagury GJ
    Environ Sci Technol; 2006 Jul; 40(13):4317-23. PubMed ID: 16856753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate of arsenite and arsenate in flooded and not flooded soils of southwest Bangladesh irrigated with arsenic contaminated water.
    Martin M; Violante A; Barberis E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Oct; 42(12):1775-83. PubMed ID: 17952778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils: influence of soil composition.
    Balasoiu CF; Zagury GJ; Deschênes L
    Sci Total Environ; 2001 Dec; 280(1-3):239-55. PubMed ID: 11763270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic speciation in multiple metal environments II. Micro-spectroscopic investigation of a CCA contaminated soil.
    Gräfe M; Tappero RV; Marcus MA; Sparks DL
    J Colloid Interface Sci; 2008 May; 321(1):1-20. PubMed ID: 18321525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioaccessible and non-bioaccessible fractions of soil arsenic.
    Whitacre SD; Basta NT; Dayton EA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(6):620-8. PubMed ID: 23442113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of arsenate adsorption-desorption in soils.
    Zhang H; Selim HM
    Environ Sci Technol; 2005 Aug; 39(16):6101-8. PubMed ID: 16173569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic fate and bioavailability in two soils contaminated with sodium arsenate pesticide: an incubation study.
    Sarkar D; Datta R
    Bull Environ Contam Toxicol; 2004 Feb; 72(2):240-7. PubMed ID: 15106757
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of Lead and Arsenic in Soils from Former Orchards on Growth of Three Plant Species.
    Fritz BG; Appriou D; Counts JR; Sample BE; Bunn AL; Dimson JF; West MT
    Environ Toxicol Chem; 2022 Jun; 41(6):1459-1465. PubMed ID: 35262236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale assessment of methylarsenic reactivity in soil. 1. Sorption and desorption on soils.
    Shimizu M; Arai Y; Sparks DL
    Environ Sci Technol; 2011 May; 45(10):4293-9. PubMed ID: 21488668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy.
    Niazi NK; Singh B; Shah P
    Environ Sci Technol; 2011 Sep; 45(17):7135-42. PubMed ID: 21797214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimony impurity in lead arsenate insecticide enhances the antimony content of old orchard soils.
    Wagner SE; Peryea FJ; Filby RA
    J Environ Qual; 2003; 32(2):736-8. PubMed ID: 12708699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.