These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29415098)

  • 21. Antimony impurity in lead arsenate insecticide enhances the antimony content of old orchard soils.
    Wagner SE; Peryea FJ; Filby RA
    J Environ Qual; 2003; 32(2):736-8. PubMed ID: 12708699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioavailability and speciation of arsenic in carrots grown in contaminated soil.
    Helgesen H; Larsen EH
    Analyst; 1998 May; 123(5):791-6. PubMed ID: 9709475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution of soil arsenic species, lead and arsenic bound to humic acid molar mass fractions in a contaminated apple orchard.
    Newton K; Amarasiriwardena D; Xing B
    Environ Pollut; 2006 Sep; 143(2):197-205. PubMed ID: 16480799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: an incubation study.
    Datta R; Sarkar D; Sharma S; Sand K
    Sci Total Environ; 2006 Dec; 372(1):39-48. PubMed ID: 16973204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fate and bioavailability of arsenic in organo-arsenical pesticide-applied soils. Part-I: incubation study.
    Sarkar D; Datta R; Sharma S
    Chemosphere; 2005 Jul; 60(2):188-95. PubMed ID: 15914238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Legacy lead arsenate soil contamination at childcare centers in the Yakima Valley, Central Washington, USA.
    Durkee J; Bartrem C; Möller G
    Chemosphere; 2017 Feb; 168():1126-1135. PubMed ID: 27823776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenic bio-accessibility and bioaccumulation in aged pesticide contaminated soils: A multiline investigation to understand environmental risk.
    Rahman MS; Reichelt-Brushet AJ; Clark MW; Farzana T; Yee LH
    Sci Total Environ; 2017 Mar; 581-582():782-793. PubMed ID: 28065542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromated copper arsenate-treated fence posts in the agronomic landscape: soil properties controlling arsenic speciation and spatial distribution.
    Schwer Iii DR; McNear DH
    J Environ Qual; 2011; 40(4):1172-81. PubMed ID: 21712587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical-specific health consultation for chromated copper arsenate chemical mixture: port of Djibouti.
    Chou S; Colman J; Tylenda C; De Rosa C
    Toxicol Ind Health; 2007 May; 23(4):183-208. PubMed ID: 18429380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arsenic solid-phase speciation and reversible binding in long-term contaminated soils.
    Rahman MS; Clark MW; Yee LH; Comarmond MJ; Payne TE; Kappen P; Mokhber-Shahin L
    Chemosphere; 2017 Feb; 168():1324-1336. PubMed ID: 27916260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content.
    Dobran S; Zagury GJ
    Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of four extraction procedures to assess arsenate and arsenite species in contaminated soils.
    Giral M; Zagury GJ; Deschênes L; Blouin JP
    Environ Pollut; 2010 May; 158(5):1890-8. PubMed ID: 19945202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arsenic mobility and speciation in contaminated kitchen garden and lawn soils: an evaluation of water for assessment of As phytoavailability.
    Waterlot C; Douay F
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6164-75. PubMed ID: 25399530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arsenic and chromium speciation in an urban contaminated soil.
    Landrot G; Tappero R; Webb SM; Sparks DL
    Chemosphere; 2012 Aug; 88(10):1196-201. PubMed ID: 22520924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arsenate adsorption structures on aluminum oxide and phyllosilicate mineral surfaces in smelter-impacted soils.
    Beaulieu BT; Savage KS
    Environ Sci Technol; 2005 May; 39(10):3571-9. PubMed ID: 15952360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of contamination from arsenical pesticide use on orchards in the Great Valley region, Virginia and West Virginia, USA.
    Robinson GR; Larkins P; Boughton CJ; Reed BW; Sibrell PL
    J Environ Qual; 2007; 36(3):654-63. PubMed ID: 17412902
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human health risk from arsenical pesticide contaminated soils: a long-term greenhouse study.
    Quazi S; Sarkar D; Datta R
    J Hazard Mater; 2013 Nov; 262():1031-8. PubMed ID: 23142055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arsenic fractionation and bioaccessibility in two alkaline Texas soils incubated with sodium arsenate.
    Datta R; Makris KC; Sarkar D
    Arch Environ Contam Toxicol; 2007 May; 52(4):475-82. PubMed ID: 17387422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inorganic arsenic speciation in soil and groundwater near in-service chromated copper arsenate-treated wood poles.
    Zagury GJ; Dobran S; Estrela S; Deschênes L
    Environ Toxicol Chem; 2008 Apr; 27(4):799-807. PubMed ID: 18333683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of arsenate on adsorption of Cd(II) by two variable charge soils.
    Liang J; Xu R; Jiang X; Wang Y; Zhao A; Tan W
    Chemosphere; 2007 May; 67(10):1949-55. PubMed ID: 17234246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.