These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 29415415)
1. Agar-agar immobilization: An alternative approach for the entrapment of protease to improve the catalytic efficiency, thermal stability and recycling efficiency. Sattar H; Aman A; Qader SAU Int J Biol Macromol; 2018 May; 111():917-922. PubMed ID: 29415415 [TBL] [Abstract][Full Text] [Related]
2. Improvement of catalytic properties of starch hydrolyzing fungal amyloglucosidase: Utilization of agar-agar as an organic matrix for immobilization. Pervez S; Nawaz MA; Jamal M; Jan T; Maqbool F; Shah I; Aman A; Ul Qader SA Carbohydr Res; 2019 Dec; 486():107860. PubMed ID: 31683070 [TBL] [Abstract][Full Text] [Related]
3. Continuous degradation of maltose: improvement in stability and catalytic properties of maltase (α-glucosidase) through immobilization using agar-agar gel as a support. Nawaz MA; Karim A; Aman A; Marchetti R; Qader SA; Molinaro A Bioprocess Biosyst Eng; 2015 Apr; 38(4):631-8. PubMed ID: 25326060 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of catalytic, reusability, and long-term stability features of Trametes versicolor IBL-04 laccase immobilized on different polymers. Asgher M; Noreen S; Bilal M Int J Biol Macromol; 2017 Feb; 95():54-62. PubMed ID: 27825994 [TBL] [Abstract][Full Text] [Related]
5. Agar-agar entrapment increases the stability of endo-β-1,4-xylanase for repeated biodegradation of xylan. Bibi Z; Shahid F; Ul Qader SA; Aman A Int J Biol Macromol; 2015 Apr; 75():121-7. PubMed ID: 25603143 [TBL] [Abstract][Full Text] [Related]
6. Utilization of different polymers for the improvement of catalytic properties and recycling efficiency of bacterial maltase. Nawaz MA; Pervez S; Rehman HU; Jamal M; Jan T; Hazrat A; Attaullah M; Khan W; Qader SAU Int J Biol Macromol; 2020 Nov; 163():1344-1352. PubMed ID: 32698068 [TBL] [Abstract][Full Text] [Related]
7. Immobilization of pectin depolymerising polygalacturonase using different polymers. Ur Rehman H; Aman A; Nawaz MA; Karim A; Ghani M; Baloch AH; Ul Qader SA Int J Biol Macromol; 2016 Jan; 82():127-33. PubMed ID: 26454112 [TBL] [Abstract][Full Text] [Related]
8. Polyacrylamide Gel-Entrapped Maltase: An Excellent Design of Using Maltase in Continuous Industrial Processes. Nawaz MA; Aman A; Rehman HU; Bibi Z; Ansari A; Islam Z; Khan IA; Qader SA Appl Biochem Biotechnol; 2016 Jun; 179(3):383-97. PubMed ID: 26847568 [TBL] [Abstract][Full Text] [Related]
9. Characteristic features and dye degrading capability of agar-agar gel immobilized manganese peroxidase. Bilal M; Asgher M; Shahid M; Bhatti HN Int J Biol Macromol; 2016 May; 86():728-40. PubMed ID: 26854887 [TBL] [Abstract][Full Text] [Related]
10. Role of two polysaccharide matrices on activity, stability and recycling efficiency of immobilized fungal amyloglucosidase of GH15 family. Pervez S; Aman A; Ul Qader SA Int J Biol Macromol; 2017 Mar; 96():70-77. PubMed ID: 27956099 [TBL] [Abstract][Full Text] [Related]
11. Improved enzyme properties upon glutaraldehyde cross-linking of alginate entrapped xylanase from Bacillus licheniformis. Kumar S; Haq I; Prakash J; Raj A Int J Biol Macromol; 2017 May; 98():24-33. PubMed ID: 28130131 [TBL] [Abstract][Full Text] [Related]
12. Immobilization of β-1,4-xylanase isolated from Bacillus licheniformis S3. Irfan M; Kiran J; Ayubi S; Ullah A; Rana QUA; Khan S; Hasan F; Badshah M; Shah AA J Basic Microbiol; 2020 Jul; 60(7):600-612. PubMed ID: 32363591 [TBL] [Abstract][Full Text] [Related]
13. Immobilization of pectin degrading enzyme from Bacillus licheniformis KIBGE IB-21 using agar-agar as a support. Rehman HU; Aman A; Zohra RR; Qader SA Carbohydr Polym; 2014 Feb; 102():622-6. PubMed ID: 24507327 [TBL] [Abstract][Full Text] [Related]
14. Production and immobilization of β-galactosidase isolated from Enterobacter aerogenes KCTC2190 by entrapment method using agar-agar organic matrix. Maity M; Bhattacharyya A; Bhowal J Appl Biochem Biotechnol; 2021 Jul; 193(7):2198-2224. PubMed ID: 33686627 [TBL] [Abstract][Full Text] [Related]
15. Entrapment of α-Amylase in Agar Beads for Biocatalysis of Macromolecular Substrate. Sharma M; Sharma V; Majumdar DK Int Sch Res Notices; 2014; 2014():936129. PubMed ID: 27382608 [TBL] [Abstract][Full Text] [Related]
16. Protease immobilization on a novel activated carrier alginate/dextrose beads: Improved stability and catalytic activity via covalent binding. Abdella MAA; Ahmed SA; Hassan ME Int J Biol Macromol; 2023 Mar; 230():123139. PubMed ID: 36621737 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres. Ibrahim AS; Al-Salamah AA; El-Toni AM; Almaary KS; El-Tayeb MA; Elbadawi YB; Antranikian G Int J Mol Sci; 2016 Jan; 17(2):. PubMed ID: 26840303 [TBL] [Abstract][Full Text] [Related]
18. Polyacrylamide Gel-Entrapped Fungal Manganese Peroxidase from Ganoderma lucidum IBL-05 with Enhanced Catalytic, Stability, and Reusability Characteristics. Bilal M; Asgher M; Iqbal HM Protein Pept Lett; 2016; 23(9):812-8. PubMed ID: 27531237 [TBL] [Abstract][Full Text] [Related]
19. Stability and activity improvement of horseradish peroxidase by covalent immobilization on functionalized reduced graphene oxide and biodegradation of high phenol concentration. Besharati Vineh M; Saboury AA; Poostchi AA; Rashidi AM; Parivar K Int J Biol Macromol; 2018 Jan; 106():1314-1322. PubMed ID: 28851646 [TBL] [Abstract][Full Text] [Related]
20. Titania/lignin hybrid materials as a novel support for α-amylase immobilization: A comprehensive study. Klapiszewski Ł; Zdarta J; Jesionowski T Colloids Surf B Biointerfaces; 2018 Feb; 162():90-97. PubMed ID: 29169053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]