These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 29415886)
1. Osteoblastic heparan sulfate regulates osteoprotegerin function and bone mass. Nozawa S; Inubushi T; Irie F; Takigami I; Matsumoto K; Shimizu K; Akiyama H; Yamaguchi Y JCI Insight; 2018 Feb; 3(3):. PubMed ID: 29415886 [TBL] [Abstract][Full Text] [Related]
2. Antiresorptive activity of osteoprotegerin requires an intact heparan sulfate-binding site. Li M; Xu D Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17187-17194. PubMed ID: 32636266 [TBL] [Abstract][Full Text] [Related]
3. Heparan Sulfate Regulates the Structure and Function of Osteoprotegerin in Osteoclastogenesis. Li M; Yang S; Xu D J Biol Chem; 2016 Nov; 291(46):24160-24171. PubMed ID: 27697839 [TBL] [Abstract][Full Text] [Related]
4. Heparin enhances osteoclastic bone resorption by inhibiting osteoprotegerin activity. Irie A; Takami M; Kubo H; Sekino-Suzuki N; Kasahara K; Sanai Y Bone; 2007 Aug; 41(2):165-74. PubMed ID: 17560185 [TBL] [Abstract][Full Text] [Related]
5. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Udagawa N; Takahashi N; Yasuda H; Mizuno A; Itoh K; Ueno Y; Shinki T; Gillespie MT; Martin TJ; Higashio K; Suda T Endocrinology; 2000 Sep; 141(9):3478-84. PubMed ID: 10965921 [TBL] [Abstract][Full Text] [Related]
6. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. Cao JJ; Wronski TJ; Iwaniec U; Phleger L; Kurimoto P; Boudignon B; Halloran BP J Bone Miner Res; 2005 Sep; 20(9):1659-68. PubMed ID: 16059637 [TBL] [Abstract][Full Text] [Related]
7. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin. Peng S; Liu XS; Huang S; Li Z; Pan H; Zhen W; Luk KD; Guo XE; Lu WW Bone; 2011 Dec; 49(6):1290-8. PubMed ID: 21925296 [TBL] [Abstract][Full Text] [Related]
8. Etiological point mutations in the hereditary multiple exostoses gene EXT1: a functional analysis of heparan sulfate polymerase activity. Cheung PK; McCormick C; Crawford BE; Esko JD; Tufaro F; Duncan G Am J Hum Genet; 2001 Jul; 69(1):55-66. PubMed ID: 11391482 [TBL] [Abstract][Full Text] [Related]
9. Perichondrium phenotype and border function are regulated by Ext1 and heparan sulfate in developing long bones: a mechanism likely deranged in Hereditary Multiple Exostoses. Huegel J; Mundy C; Sgariglia F; Nygren P; Billings PC; Yamaguchi Y; Koyama E; Pacifici M Dev Biol; 2013 May; 377(1):100-12. PubMed ID: 23458899 [TBL] [Abstract][Full Text] [Related]
10. The pathogenic roles of heparan sulfate deficiency in hereditary multiple exostoses. Pacifici M Matrix Biol; 2018 Oct; 71-72():28-39. PubMed ID: 29277722 [TBL] [Abstract][Full Text] [Related]
11. The roles of TNFR1 in lipopolysaccharide-induced bone loss: dual effects of TNFR1 on bone metabolism via osteoclastogenesis and osteoblast survival. Ochi H; Hara Y; Tagawa M; Shinomiya K; Asou Y J Orthop Res; 2010 May; 28(5):657-63. PubMed ID: 19890995 [TBL] [Abstract][Full Text] [Related]
12. Transgenic expression of the EXT2 gene in developing chondrocytes enhances the synthesis of heparan sulfate and bone formation in mice. Morimoto K; Shimizu T; Furukawa K; Morio H; Kurosawa H; Shirasawa T Biochem Biophys Res Commun; 2002 Apr; 292(4):999-1009. PubMed ID: 11944914 [TBL] [Abstract][Full Text] [Related]
13. Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Koziel L; Kunath M; Kelly OG; Vortkamp A Dev Cell; 2004 Jun; 6(6):801-13. PubMed ID: 15177029 [TBL] [Abstract][Full Text] [Related]
14. Liver X receptors orchestrate osteoblast/osteoclast crosstalk and counteract pathologic bone loss. Kleyer A; Scholtysek C; Bottesch E; Hillienhof U; Beyer C; Distler JH; Tuckermann JP; Schett G; Krönke G J Bone Miner Res; 2012 Dec; 27(12):2442-51. PubMed ID: 22806960 [TBL] [Abstract][Full Text] [Related]
15. Heparan sulfate in skeletal development, growth, and pathology: the case of hereditary multiple exostoses. Huegel J; Sgariglia F; Enomoto-Iwamoto M; Koyama E; Dormans JP; Pacifici M Dev Dyn; 2013 Sep; 242(9):1021-32. PubMed ID: 23821404 [TBL] [Abstract][Full Text] [Related]
16. Elevated Gα11 expression in osteoblast lineage cells promotes osteoclastogenesis and leads to enhanced trabecular bone accrual in response to pamidronate. Dela Cruz A; Grynpas MD; Mitchell J Am J Physiol Endocrinol Metab; 2016 May; 310(10):E811-20. PubMed ID: 27006198 [TBL] [Abstract][Full Text] [Related]
17. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. Luo XH; Guo LJ; Xie H; Yuan LQ; Wu XP; Zhou HD; Liao EY J Bone Miner Res; 2006 Oct; 21(10):1648-56. PubMed ID: 16995820 [TBL] [Abstract][Full Text] [Related]
18. Higher levels of s-RANKL and osteoprotegerin in children and adolescents with type 1 diabetes mellitus may indicate increased osteoclast signaling and predisposition to lower bone mass: a multivariate cross-sectional analysis. Tsentidis C; Gourgiotis D; Kossiva L; Doulgeraki A; Marmarinos A; Galli-Tsinopoulou A; Karavanaki K Osteoporos Int; 2016 Apr; 27(4):1631-1643. PubMed ID: 26588909 [TBL] [Abstract][Full Text] [Related]
19. Mutation in the heparan sulfate biosynthesis enzyme EXT1 influences growth factor signaling and fibroblast interactions with the extracellular matrix. Osterholm C; Barczyk MM; Busse M; Grønning M; Reed RK; Kusche-Gullberg M J Biol Chem; 2009 Dec; 284(50):34935-43. PubMed ID: 19850926 [TBL] [Abstract][Full Text] [Related]