BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 2941630)

  • 1. Study of the in vivo and in vitro photosensitizing capabilities of uroporphyrin I compared to photofrin II.
    Nelson JS; Sun CH; Berns MW
    Lasers Surg Med; 1986; 6(2):131-6. PubMed ID: 2941630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of fluorescence and photodynamic activities of whole hematoporphyrin derivative and its enriched active components.
    Nelson JS; Wright WH; Berns MW
    J Natl Cancer Inst; 1985 Dec; 75(6):1135-40. PubMed ID: 2933546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of 28 porphyrins and their abilities to localize in mammary mouse carcinoma: uroporphyrin I superior to hematoporphyrin derivative.
    El-Far M; Pimstone N
    Prog Clin Biol Res; 1984; 170():661-72. PubMed ID: 6241706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of multiple photosensitizers and wavelengths during photodynamic therapy: a new approach to enhance tumor eradication.
    Nelson JS; Liaw LH; Lahlum RA; Cooper PL; Berns MW
    J Natl Cancer Inst; 1990 May; 82(10):868-73. PubMed ID: 2139704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo photosensitizing capabilities of 5-ALA versus photofrin in vascular endothelial cells.
    Chang CJ; Sun CH; Liaw LH; Berns MW; Nelson JS
    Lasers Surg Med; 1999; 24(3):178-86. PubMed ID: 10229148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Verapamil and hematoporphyrin derivative for tumour destruction by photodynamic therapy.
    Gossner L; Wittke H; Warzecha A; Sroka R; Ernst H; Meier M; Ell C
    Br J Cancer; 1991 Jul; 64(1):84-6. PubMed ID: 1830212
    [No Abstract]   [Full Text] [Related]  

  • 7. Photodynamic therapy of C3H mouse mammary carcinoma with haematoporphyrin di-ethers as sensitizers.
    Evensen JF; Sommer S; Rimington C; Moan J
    Br J Cancer; 1987 May; 55(5):483-6. PubMed ID: 2955805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between photodynamic efficacy of differing porphyrins and membrane partitioning behavior.
    Okunaka T; Eckhauser ML; Kato H; Bomaminio A; Yamamoto H; Aizawa K; Sarasua MM; Koehler KA
    Lasers Surg Med; 1992; 12(1):98-103. PubMed ID: 1535406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen limitation of direct tumor cell kill during photodynamic treatment of a murine tumor model.
    Henderson BW; Fingar VH
    Photochem Photobiol; 1989 Mar; 49(3):299-304. PubMed ID: 2525260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evidence on possibility to radiosensitize aggressive tumors by porphyrins.
    Luksiene Z
    Medicina (Kaunas); 2004; 40(9):868-74. PubMed ID: 15456974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for different mechanisms of EMT-6 tumor necrosis by photodynamic therapy with disulfonated aluminum phthalocyanine or photofrin: tumor cell survival and blood flow.
    Chan WS; Brasseur N; La Madeleine C; van Lier JE
    Anticancer Res; 1996; 16(4A):1887-92. PubMed ID: 8712717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of photodynamic therapy on adhesion molecules and metastasis.
    Rousset N; Vonarx V; Eléouet S; Carré J; Kerninon E; Lajat Y; Patrice T
    J Photochem Photobiol B; 1999; 52(1-3):65-73. PubMed ID: 10643074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased efficacy of photodynamic therapy of R3230AC mammary adenocarcinoma by intratumoral injection of Photofrin II.
    Gibson SL; van der Meid KR; Murant RS; Hilf R
    Br J Cancer; 1990 Apr; 61(4):553-7. PubMed ID: 2139578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced tumor control following sequential treatments of photodynamic therapy (PDT) and localized microwave hyperthermia in vivo.
    Waldow SM; Henderson BW; Dougherty TJ
    Lasers Surg Med; 1984; 4(1):79-85. PubMed ID: 6235420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of hematoporphyrin photoradiation therapy to treat choroidal melanomas.
    Bruce RA
    Lasers Surg Med; 1984; 4(1):59-64. PubMed ID: 6235417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Picosecond fluorescence of R3230AC mammary carcinoma mitochondria after treatment with hematoporphyrin derivative and Photofrin II in vivo.
    Hanzlik CA; Knox RS; Gibson SL; Hilf R
    Photochem Photobiol; 1989 Jul; 50(1):45-53. PubMed ID: 2527374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum yields and kinetics of the photobleaching of hematoporphyrin, Photofrin II, tetra(4-sulfonatophenyl)-porphine and uroporphyrin.
    Spikes JD
    Photochem Photobiol; 1992 Jun; 55(6):797-808. PubMed ID: 1409888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosensitizing effects of hematoporphyrin derivative and photofrin II on the plasma membrane enzymes 5'-nucleotidase, Na+K+-ATPase, and Mg2+-ATPase in R3230AC mammary adenocarcinomas.
    Gibson SL; Murant RS; Hilf R
    Cancer Res; 1988 Jun; 48(12):3360-6. PubMed ID: 2836053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in tumor interstitial pressure induced by photodynamic therapy.
    Fingar VH; Wieman TJ; Doak KW
    Photochem Photobiol; 1991 Jun; 53(6):763-8. PubMed ID: 1832229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiosensitization of tumours by porphyrins.
    Luksiene Z; Juzenas P; Moan J
    Cancer Lett; 2006 Apr; 235(1):40-7. PubMed ID: 15946797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.