These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29416559)

  • 1. A systematic optimization of styrene biosynthesis in
    Liu C; Men X; Chen H; Li M; Ding Z; Chen G; Wang F; Liu H; Wang Q; Zhu Y; Zhang H; Xian M
    Biotechnol Biofuels; 2018; 11():14. PubMed ID: 29416559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Styrene biosynthesis from glucose by engineered E. coli.
    McKenna R; Nielsen DR
    Metab Eng; 2011 Sep; 13(5):544-54. PubMed ID: 21722749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced production of styrene by engineered Escherichia coli and in situ product recovery (ISPR) with an organic solvent.
    Lee K; Bang HB; Lee YH; Jeong KJ
    Microb Cell Fact; 2019 May; 18(1):79. PubMed ID: 31053078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome mining of 2-phenylethanol biosynthetic genes from
    Liu C; Zhang K; Cao W; Zhang G; Chen G; Yang H; Wang Q; Liu H; Xian M; Zhang H
    Biotechnol Biofuels; 2018; 11():305. PubMed ID: 30455734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Styrene Production in Genetically Engineered
    Noda S; Fujiwara R; Mori Y; Dainin M; Shirai T; Kondo A
    BioTech (Basel); 2024 Jan; 13(1):. PubMed ID: 38247732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae.
    McKenna R; Thompson B; Pugh S; Nielsen DR
    Microb Cell Fact; 2014 Aug; 13():123. PubMed ID: 25162943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Escherichia coli for de novo production of 3-phenylpropanol via retrobiosynthesis approach.
    Liu Z; Zhang X; Lei D; Qiao B; Zhao GR
    Microb Cell Fact; 2021 Jun; 20(1):121. PubMed ID: 34176467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Escherichia coli BL21 (DE3) for de novo production of L-DOPA from D-glucose.
    Fordjour E; Adipah FK; Zhou S; Du G; Zhou J
    Microb Cell Fact; 2019 Apr; 18(1):74. PubMed ID: 31023316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering
    Hu M; Li M; Miao M; Zhang T
    J Agric Food Chem; 2022 Jul; 70(28):8704-8712. PubMed ID: 35731707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing in situ removal strategies for improving styrene bioproduction.
    McKenna R; Moya L; McDaniel M; Nielsen DR
    Bioprocess Biosyst Eng; 2015 Jan; 38(1):165-74. PubMed ID: 25034182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomics and metabolomics analysis of L-phenylalanine overproduction in Escherichia coli.
    Sun W; Ding D; Bai D; Lin Y; Zhu Y; Zhang C; Zhang D
    Microb Cell Fact; 2023 Apr; 22(1):65. PubMed ID: 37024921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Escherichia coli for the production of phenol from glucose.
    Kim B; Park H; Na D; Lee SY
    Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of  l-phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin.
    Wu WB; Guo XL; Zhang ML; Huang QG; Qi F; Huang JZ
    Biotechnol Appl Biochem; 2018 May; 65(3):476-483. PubMed ID: 28872702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenylalanine ammonia lyase from Arabidopsis thaliana (AtPAL2): A potent MIO-enzyme for the synthesis of non-canonical aromatic alpha-amino acids: Part I: Comparative characterization to the enzymes from Petroselinum crispum (PcPAL1) and Rhodosporidium toruloides (RtPAL).
    Dreßen A; Hilberath T; Mackfeld U; Billmeier A; Rudat J; Pohl M
    J Biotechnol; 2017 Sep; 258():148-157. PubMed ID: 28392421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational engineering of multiple module pathways for the production of L-phenylalanine in Corynebacterium glutamicum.
    Zhang C; Zhang J; Kang Z; Du G; Chen J
    J Ind Microbiol Biotechnol; 2015 May; 42(5):787-97. PubMed ID: 25665502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of indole pyruvic acid biosynthesis in Escherichia coli with tdiD.
    Zhu Y; Hua Y; Zhang B; Sun L; Li W; Kong X; Hong J
    Microb Cell Fact; 2017 Jan; 16(1):2. PubMed ID: 28049530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-omic based production strain improvement (MOBpsi) for bio-manufacturing of toxic chemicals.
    Webb JP; Paiva AC; Rossoni L; Alstrom-Moore A; Springthorpe V; Vaud S; Yeh V; Minde DP; Langer S; Walker H; Hounslow A; Nielsen DR; Larson T; Lilley K; Stephens G; Thomas GH; Bonev BB; Kelly DJ; Conradie A; Green J
    Metab Eng; 2022 Jul; 72():133-149. PubMed ID: 35289291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosome Engineering To Generate Plasmid-Free Phenylalanine- and Tyrosine-Overproducing
    Koma D; Kishida T; Yoshida E; Ohashi H; Yamanaka H; Moriyoshi K; Nagamori E; Ohmoto T
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes.
    Gottlieb K; Albermann C; Sprenger GA
    Microb Cell Fact; 2014 Jul; 13(1):96. PubMed ID: 25012491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced l-phenylalanine biosynthesis by co-expression of pheA(fbr) and aroF(wt).
    Zhou H; Liao X; Wang T; Du G; Chen J
    Bioresour Technol; 2010 Jun; 101(11):4151-6. PubMed ID: 20137911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.