These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29417058)

  • 1. Yeast quiescence exit swiftness is influenced by cell volume and chronological age.
    Laporte D; Jimenez L; Gouleme L; Sagot I
    Microb Cell; 2017 Dec; 5(2):104-111. PubMed ID: 29417058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms that Link Chronological Aging to Cellular Quiescence in Budding Yeast.
    Mohammad K; Baratang Junio JA; Tafakori T; Orfanos E; Titorenko VI
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32630624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria reorganization upon proliferation arrest predicts individual yeast cell fate.
    Laporte D; Gouleme L; Jimenez L; Khemiri I; Sagot I
    Elife; 2018 Oct; 7():. PubMed ID: 30299253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells.
    Mohammad K; Dakik P; Medkour Y; Mitrofanova D; Titorenko VI
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31052375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic status rather than cell cycle signals control quiescence entry and exit.
    Laporte D; Lebaudy A; Sahin A; Pinson B; Ceschin J; Daignan-Fornier B; Sagot I
    J Cell Biol; 2011 Mar; 192(6):949-57. PubMed ID: 21402786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diverse geroprotectors differently affect a mechanism linking cellular aging to cellular quiescence in budding yeast.
    Leonov A; Feldman R; Piano A; Arlia-Ciommo A; Junio JAB; Orfanos E; Tafakori T; Lutchman V; Mohammad K; Elsaser S; Orfali S; Rajen H; Titorenko VI
    Oncotarget; 2022; 13():918-943. PubMed ID: 35937500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A screen for histone mutations that affect quiescence in S. cerevisiae.
    Small EM; Osley MA
    FEBS J; 2023 Jul; 290(14):3539-3562. PubMed ID: 36871139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cell biology of quiescent yeast - a diversity of individual scenarios.
    Sagot I; Laporte D
    J Cell Sci; 2019 Jan; 132(1):. PubMed ID: 30602574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trehalose is a key determinant of the quiescent metabolic state that fuels cell cycle progression upon return to growth.
    Shi L; Sutter BM; Ye X; Tu BP
    Mol Biol Cell; 2010 Jun; 21(12):1982-90. PubMed ID: 20427572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular quiescence in budding yeast.
    Sun S; Gresham D
    Yeast; 2021 Jan; 38(1):12-29. PubMed ID: 33350503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Sleeping beauty": quiescence in Saccharomyces cerevisiae.
    Gray JV; Petsko GA; Johnston GC; Ringe D; Singer RA; Werner-Washburne M
    Microbiol Mol Biol Rev; 2004 Jun; 68(2):187-206. PubMed ID: 15187181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronological Lifespan in Yeast Is Dependent on the Accumulation of Storage Carbohydrates Mediated by Yak1, Mck1 and Rim15 Kinases.
    Cao L; Tang Y; Quan Z; Zhang Z; Oliver SG; Zhang N
    PLoS Genet; 2016 Dec; 12(12):e1006458. PubMed ID: 27923067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Long Journey before Cycling: Regulation of Quiescence Exit in Adult Muscle Satellite Cells.
    Zhou S; Han L; Wu Z
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidic media promotes quiescence entry in
    Greenlaw AC; Tsukiyama T
    bioRxiv; 2023 Nov; ():. PubMed ID: 38045406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial acidic media promotes quiescence entry in
    Greenlaw A; Dell R; Tsukiyama T
    MicroPubl Biol; 2024; 2024():. PubMed ID: 38463631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A common strategy for initiating the transition from proliferation to quiescence.
    Miles S; Breeden L
    Curr Genet; 2017 May; 63(2):179-186. PubMed ID: 27544284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ssd1 and the cell wall integrity pathway promote entry, maintenance, and recovery from quiescence in budding yeast.
    Miles S; Li LH; Melville Z; Breeden LL
    Mol Biol Cell; 2019 Aug; 30(17):2205-2217. PubMed ID: 31141453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of a quiescent state, entry into a non-quiescent state and survival in the non-quiescent state.
    Leonov A; Feldman R; Piano A; Arlia-Ciommo A; Lutchman V; Ahmadi M; Elsaser S; Fakim H; Heshmati-Moghaddam M; Hussain A; Orfali S; Rajen H; Roofigari-Esfahani N; Rosanelli L; Titorenko VI
    Oncotarget; 2017 Sep; 8(41):69328-69350. PubMed ID: 29050207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-transcriptional regulation shapes the transcriptome of quiescent budding yeast.
    Greenlaw AC; Alavattam KG; Tsukiyama T
    Nucleic Acids Res; 2024 Feb; 52(3):1043-1063. PubMed ID: 38048329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical coupling of supracellular stress amplification and tissue fluidization during exit from quiescence.
    Lång E; Pedersen C; Lång A; Blicher P; Klungland A; Carlson A; Bøe SO
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2201328119. PubMed ID: 35914175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.