BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 29417220)

  • 1. Ubiquitin-like activating enzymes BcAtg3 and BcAtg7 participate in development and pathogenesis of Botrytis cinerea.
    Ren W; Sang C; Shi D; Song X; Zhou M; Chen C
    Curr Genet; 2018 Aug; 64(4):919-930. PubMed ID: 29417220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Autophagy Gene
    Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The autophagy-related gene BcATG1 is involved in fungal development and pathogenesis in Botrytis cinerea.
    Ren W; Zhang Z; Shao W; Yang Y; Zhou M; Chen C
    Mol Plant Pathol; 2017 Feb; 18(2):238-248. PubMed ID: 26972592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of the cysteine protease BcAtg4 in development and virulence of Botrytis cinerea.
    Liu N; Ren W; Li F; Chen C; Ma Z
    Curr Genet; 2019 Feb; 65(1):293-300. PubMed ID: 30167777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of BcVeA and BcVelB in regulating conidiation, pigmentation and virulence in Botrytis cinerea.
    Yang Q; Chen Y; Ma Z
    Fungal Genet Biol; 2013 Jan; 50():63-71. PubMed ID: 23147398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The response regulator BcSkn7 is required for vegetative differentiation and adaptation to oxidative and osmotic stresses in Botrytis cinerea.
    Yang Q; Yin D; Yin Y; Cao Y; Ma Z
    Mol Plant Pathol; 2015 Apr; 16(3):276-87. PubMed ID: 25130972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of
    Liu X; Xie J; Fu Y; Jiang D; Chen T; Cheng J
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963451
    [No Abstract]   [Full Text] [Related]  

  • 8. Involvement of two type 2C protein phosphatases BcPtc1 and BcPtc3 in the regulation of multiple stress tolerance and virulence of Botrytis cinerea.
    Yang Q; Jiang J; Mayr C; Hahn M; Ma Z
    Environ Microbiol; 2013 Oct; 15(10):2696-711. PubMed ID: 23601355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of BcStr2 in methionine biosynthesis, vegetative differentiation, multiple stress tolerance and virulence in Botrytis cinerea.
    Shao W; Yang Y; Zhang Y; Lv C; Ren W; Chen C
    Mol Plant Pathol; 2016 Apr; 17(3):438-47. PubMed ID: 26176995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exocyst subunit
    Ma Z; Chen Z; Wang W; Wang K; Zhu T
    J Biosci; 2020; 45():. PubMed ID: 33184241
    [No Abstract]   [Full Text] [Related]  

  • 11. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development.
    Liu Y; Liu JK; Li GH; Zhang MZ; Zhang YY; Wang YY; Hou J; Yang S; Sun J; Qin QM
    Mol Plant Pathol; 2019 May; 20(5):731-747. PubMed ID: 31008573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BcMtg2 is required for multiple stress tolerance, vegetative development and virulence in Botrytis cinerea.
    Shao W; Zhang Y; Wang J; Lv C; Chen C
    Sci Rep; 2016 Jun; 6():28673. PubMed ID: 27346661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in
    Vasquez-Montaño E; Hoppe G; Vega A; Olivares-Yañez C; Canessa P
    mBio; 2020 Aug; 11(4):. PubMed ID: 32753496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The putative H3K36 demethylase BcKDM1 affects virulence, stress responses and photomorphogenesis in Botrytis cinerea.
    Schumacher J; Studt L; Tudzynski P
    Fungal Genet Biol; 2019 Feb; 123():14-24. PubMed ID: 30445217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of protein tyrosine phosphatases BcPtpA and BcPtpB in regulation of vegetative development, virulence and multi-stress tolerance in Botrytis cinerea.
    Yang Q; Yu F; Yin Y; Ma Z
    PLoS One; 2013; 8(4):e61307. PubMed ID: 23585890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription Factor PdeR Is Involved in Fungal Development, Metabolic Change, and Pathogenesis of Gray Mold
    Han JW; Kim DY; Lee YJ; Choi YR; Kim B; Choi GJ; Han SW; Kim H
    J Agric Food Chem; 2020 Aug; 68(34):9171-9179. PubMed ID: 32786857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea.
    An B; Li B; Li H; Zhang Z; Qin G; Tian S
    New Phytol; 2016 Mar; 209(4):1668-80. PubMed ID: 26527167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus
    Sun J; Sun CH; Chang HW; Yang S; Liu Y; Zhang MZ; Hou J; Zhang H; Li GH; Qin QM
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33567582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of diacylglycerol O-acyl transferase 2 gene to decipher its role in virulence of Botrytis cinerea.
    Sharma E; Tayal P; Anand G; Mathur P; Kapoor R
    Curr Genet; 2018 Apr; 64(2):443-457. PubMed ID: 28940057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The VELVET Complex in the Gray Mold Fungus Botrytis cinerea: Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence.
    Schumacher J; Simon A; Cohrs KC; Traeger S; Porquier A; Dalmais B; Viaud M; Tudzynski B
    Mol Plant Microbe Interact; 2015 Jun; 28(6):659-74. PubMed ID: 25625818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.