These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 29417220)
1. Ubiquitin-like activating enzymes BcAtg3 and BcAtg7 participate in development and pathogenesis of Botrytis cinerea. Ren W; Sang C; Shi D; Song X; Zhou M; Chen C Curr Genet; 2018 Aug; 64(4):919-930. PubMed ID: 29417220 [TBL] [Abstract][Full Text] [Related]
2. The Autophagy Gene Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212 [TBL] [Abstract][Full Text] [Related]
3. The autophagy-related gene BcATG1 is involved in fungal development and pathogenesis in Botrytis cinerea. Ren W; Zhang Z; Shao W; Yang Y; Zhou M; Chen C Mol Plant Pathol; 2017 Feb; 18(2):238-248. PubMed ID: 26972592 [TBL] [Abstract][Full Text] [Related]
4. Involvement of the cysteine protease BcAtg4 in development and virulence of Botrytis cinerea. Liu N; Ren W; Li F; Chen C; Ma Z Curr Genet; 2019 Feb; 65(1):293-300. PubMed ID: 30167777 [TBL] [Abstract][Full Text] [Related]
5. Involvement of BcVeA and BcVelB in regulating conidiation, pigmentation and virulence in Botrytis cinerea. Yang Q; Chen Y; Ma Z Fungal Genet Biol; 2013 Jan; 50():63-71. PubMed ID: 23147398 [TBL] [Abstract][Full Text] [Related]
6. The response regulator BcSkn7 is required for vegetative differentiation and adaptation to oxidative and osmotic stresses in Botrytis cinerea. Yang Q; Yin D; Yin Y; Cao Y; Ma Z Mol Plant Pathol; 2015 Apr; 16(3):276-87. PubMed ID: 25130972 [TBL] [Abstract][Full Text] [Related]
7. The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of Liu X; Xie J; Fu Y; Jiang D; Chen T; Cheng J Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963451 [No Abstract] [Full Text] [Related]
8. Involvement of two type 2C protein phosphatases BcPtc1 and BcPtc3 in the regulation of multiple stress tolerance and virulence of Botrytis cinerea. Yang Q; Jiang J; Mayr C; Hahn M; Ma Z Environ Microbiol; 2013 Oct; 15(10):2696-711. PubMed ID: 23601355 [TBL] [Abstract][Full Text] [Related]
9. Involvement of BcStr2 in methionine biosynthesis, vegetative differentiation, multiple stress tolerance and virulence in Botrytis cinerea. Shao W; Yang Y; Zhang Y; Lv C; Ren W; Chen C Mol Plant Pathol; 2016 Apr; 17(3):438-47. PubMed ID: 26176995 [TBL] [Abstract][Full Text] [Related]
10. Exocyst subunit Ma Z; Chen Z; Wang W; Wang K; Zhu T J Biosci; 2020; 45():. PubMed ID: 33184241 [No Abstract] [Full Text] [Related]
11. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development. Liu Y; Liu JK; Li GH; Zhang MZ; Zhang YY; Wang YY; Hou J; Yang S; Sun J; Qin QM Mol Plant Pathol; 2019 May; 20(5):731-747. PubMed ID: 31008573 [TBL] [Abstract][Full Text] [Related]
12. BcMtg2 is required for multiple stress tolerance, vegetative development and virulence in Botrytis cinerea. Shao W; Zhang Y; Wang J; Lv C; Chen C Sci Rep; 2016 Jun; 6():28673. PubMed ID: 27346661 [TBL] [Abstract][Full Text] [Related]
13. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in Vasquez-Montaño E; Hoppe G; Vega A; Olivares-Yañez C; Canessa P mBio; 2020 Aug; 11(4):. PubMed ID: 32753496 [TBL] [Abstract][Full Text] [Related]
14. The putative H3K36 demethylase BcKDM1 affects virulence, stress responses and photomorphogenesis in Botrytis cinerea. Schumacher J; Studt L; Tudzynski P Fungal Genet Biol; 2019 Feb; 123():14-24. PubMed ID: 30445217 [TBL] [Abstract][Full Text] [Related]
15. Involvement of protein tyrosine phosphatases BcPtpA and BcPtpB in regulation of vegetative development, virulence and multi-stress tolerance in Botrytis cinerea. Yang Q; Yu F; Yin Y; Ma Z PLoS One; 2013; 8(4):e61307. PubMed ID: 23585890 [TBL] [Abstract][Full Text] [Related]
16. Transcription Factor PdeR Is Involved in Fungal Development, Metabolic Change, and Pathogenesis of Gray Mold Han JW; Kim DY; Lee YJ; Choi YR; Kim B; Choi GJ; Han SW; Kim H J Agric Food Chem; 2020 Aug; 68(34):9171-9179. PubMed ID: 32786857 [TBL] [Abstract][Full Text] [Related]
17. Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea. An B; Li B; Li H; Zhang Z; Qin G; Tian S New Phytol; 2016 Mar; 209(4):1668-80. PubMed ID: 26527167 [TBL] [Abstract][Full Text] [Related]
18. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus Sun J; Sun CH; Chang HW; Yang S; Liu Y; Zhang MZ; Hou J; Zhang H; Li GH; Qin QM Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33567582 [TBL] [Abstract][Full Text] [Related]
19. Functional analysis of diacylglycerol O-acyl transferase 2 gene to decipher its role in virulence of Botrytis cinerea. Sharma E; Tayal P; Anand G; Mathur P; Kapoor R Curr Genet; 2018 Apr; 64(2):443-457. PubMed ID: 28940057 [TBL] [Abstract][Full Text] [Related]
20. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Ren W; Qian C; Ren D; Cai Y; Deng Z; Zhang N; Wang C; Wang Y; Zhu P; Xu L mBio; 2024 Jul; 15(7):e0013324. PubMed ID: 38814088 [No Abstract] [Full Text] [Related] [Next] [New Search]