These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29417220)

  • 41. Botrytis cinerea methyl isocitrate lyase mediates oxidative stress tolerance and programmed cell death by modulating cellular succinate levels.
    Oren-Young L; Llorens E; Bi K; Zhang M; Sharon A
    Fungal Genet Biol; 2021 Jan; 146():103484. PubMed ID: 33220429
    [TBL] [Abstract][Full Text] [Related]  

  • 42. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea.
    Segmüller N; Ellendorf U; Tudzynski B; Tudzynski P
    Eukaryot Cell; 2007 Feb; 6(2):211-21. PubMed ID: 17189492
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A new transformant selection system for the gray mold fungus Botrytis cinerea based on the expression of fenhexamid-insensitive ERG27 variants.
    Cohrs KC; Burbank J; Schumacher J
    Fungal Genet Biol; 2017 Mar; 100():42-51. PubMed ID: 28188884
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca
    Kilani J; Davanture M; Simon A; Zivy M; Fillinger S
    J Proteomics; 2020 Feb; 212():103580. PubMed ID: 31733416
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The mitogen-activated protein kinase BcSak1 of Botrytis cinerea is required for pathogenic development and has broad regulatory functions beyond stress response.
    Heller J; Ruhnke N; Espino JJ; Massaroli M; Collado IG; Tudzynski P
    Mol Plant Microbe Interact; 2012 Jun; 25(6):802-16. PubMed ID: 22352714
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Function of small GTPase Rho3 in regulating growth, conidiation and virulence of Botrytis cinerea.
    An B; Li B; Qin G; Tian S
    Fungal Genet Biol; 2015 Feb; 75():46-55. PubMed ID: 25624070
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The key gluconeogenic gene PCK1 is crucial for virulence of Botrytis cinerea via initiating its conidial germination and host penetration.
    Liu JK; Chang HW; Liu Y; Qin YH; Ding YH; Wang L; Zhao Y; Zhang MZ; Cao SN; Li LT; Liu W; Li GH; Qin QM
    Environ Microbiol; 2018 May; 20(5):1794-1814. PubMed ID: 29614212
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A copper-transporting ATPase BcCCC2 is necessary for pathogenicity of Botrytis cinerea.
    Saitoh Y; Izumitsu K; Morita A; Tanaka C
    Mol Genet Genomics; 2010 Jul; 284(1):33-43. PubMed ID: 20526618
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants.
    Valette-Collet O; Cimerman A; Reignault P; Levis C; Boccara M
    Mol Plant Microbe Interact; 2003 Apr; 16(4):360-7. PubMed ID: 12744465
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Involvement of the Autophagy Protein Atg6 in Development and Virulence in the Gray Mold Fungus
    Liu N; Zhou S; Li B; Ren W
    Front Microbiol; 2021; 12():798363. PubMed ID: 34970250
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Loss of bcbrn1 and bcpks13 in Botrytis cinerea Not Only Blocks Melanization But Also Increases Vegetative Growth and Virulence.
    Zhang C; He Y; Zhu P; Chen L; Wang Y; Ni B; Xu L
    Mol Plant Microbe Interact; 2015 Oct; 28(10):1091-101. PubMed ID: 26035129
    [TBL] [Abstract][Full Text] [Related]  

  • 52. BcSas2-Mediated Histone H4K16 Acetylation Is Critical for Virulence and Oxidative Stress Response of
    Wang G; Song L; Bai T; Liang W
    Mol Plant Microbe Interact; 2020 Oct; 33(10):1242-1251. PubMed ID: 32689887
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic alteration of UDP-rhamnose metabolism in Botrytis cinerea leads to the accumulation of UDP-KDG that adversely affects development and pathogenicity.
    Ma L; Salas O; Bowler K; Oren-Young L; Bar-Peled M; Sharon A
    Mol Plant Pathol; 2017 Feb; 18(2):263-275. PubMed ID: 26991954
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea.
    Schumacher J; Simon A; Cohrs KC; Viaud M; Tudzynski P
    PLoS Genet; 2014 Jan; 10(1):e1004040. PubMed ID: 24415947
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A double-stranded RNA mycovirus confers hypovirulence-associated traits to Botrytis cinerea.
    Castro M; Kramer K; Valdivia L; Ortiz S; Castillo A
    FEMS Microbiol Lett; 2003 Nov; 228(1):87-91. PubMed ID: 14612241
    [TBL] [Abstract][Full Text] [Related]  

  • 56. BcTaf14 regulates growth and development, virulence, and stress responses in the phytopathogenic fungus Botrytis cinerea.
    Han H; Lv F; Liu Z; Chen T; Xue T; Liang W; Liu M
    Mol Plant Pathol; 2023 Aug; 24(8):849-865. PubMed ID: 37026690
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Light governs asexual differentiation in the grey mould fungus Botrytis cinerea via the putative transcription factor BcLTF2.
    Cohrs KC; Simon A; Viaud M; Schumacher J
    Environ Microbiol; 2016 Nov; 18(11):4068-4086. PubMed ID: 27347834
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen.
    El Oirdi M; Trapani A; Bouarab K
    Environ Microbiol; 2010 Jan; 12(1):239-53. PubMed ID: 19799622
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators BcLTF3 and BcREG1.
    Brandhoff B; Simon A; Dornieden A; Schumacher J
    Curr Genet; 2017 Oct; 63(5):931-949. PubMed ID: 28382431
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional analysis of the exocyst subunit BcExo70 in Botrytis cinerea.
    Guan W; Feng J; Wang R; Ma Z; Wang W; Wang K; Zhu T
    Curr Genet; 2020 Feb; 66(1):85-95. PubMed ID: 31183512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.