These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29417220)

  • 61. Fungal Spores Promote the Glycerol Production of Saccharomyces cerevisiae by Upregulating the Oxidative Balance Pathway.
    Jiang C; Chen X; Lei S; Shao D; Zhu J; Liu Y; Shi J
    J Agric Food Chem; 2018 Mar; 66(12):3188-3198. PubMed ID: 29521089
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Identification of pathogenesis-associated genes by T-DNA-mediated insertional mutagenesis in Botrytis cinerea: a type 2A phosphoprotein phosphatase and an SPT3 transcription factor have significant impact on virulence.
    Giesbert S; Schumacher J; Kupas V; Espino J; Segmüller N; Haeuser-Hahn I; Schreier PH; Tudzynski P
    Mol Plant Microbe Interact; 2012 Apr; 25(4):481-95. PubMed ID: 22112214
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The F-actin capping protein is required for hyphal growth and full virulence but is dispensable for septum formation in Botrytis cinerea.
    González-Rodríguez VE; Garrido C; Cantoral JM; Schumacher J
    Fungal Biol; 2016 Oct; 120(10):1225-35. PubMed ID: 27647239
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State.
    Wang X; Glawe DA; Kramer E; Weller D; Okubara PA
    Phytopathology; 2018 Jun; 108(6):691-701. PubMed ID: 29334476
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mycoparasitism of Acremonium strictum BCP on Botrytis cinerea, the gray mold pathogen.
    Choi GJ; Kim JC; Jang KS; Cho KY; Kim HT
    J Microbiol Biotechnol; 2008 Jan; 18(1):167-70. PubMed ID: 18239435
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The Sensor Proteins BcSho1 and BcSln1 Are Involved in, Though Not Essential to, Vegetative Differentiation, Pathogenicity and Osmotic Stress Tolerance in
    Ren W; Liu N; Yang Y; Yang Q; Chen C; Gao Q
    Front Microbiol; 2019; 10():328. PubMed ID: 30858841
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea.
    Yan L; Yang Q; Jiang J; Michailides TJ; Ma Z
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):215-26. PubMed ID: 21161211
    [TBL] [Abstract][Full Text] [Related]  

  • 68. BcIqg1, a fungal IQGAP homolog, interacts with NADPH oxidase, MAP kinase and calcium signaling proteins and regulates virulence and development in Botrytis cinerea.
    Marschall R; Tudzynski P
    Mol Microbiol; 2016 Jul; 101(2):281-98. PubMed ID: 27062300
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Disruption of the Bcchs3a chitin synthase gene in Botrytis cinerea is responsible for altered adhesion and overstimulation of host plant immunity.
    Arbelet D; Malfatti P; Simond-Côte E; Fontaine T; Desquilbet L; Expert D; Kunz C; Soulié MC
    Mol Plant Microbe Interact; 2010 Oct; 23(10):1324-34. PubMed ID: 20672878
    [TBL] [Abstract][Full Text] [Related]  

  • 70. pH controls both transcription and post-translational processing of the protease BcACP1 in the phytopathogenic fungus Botrytis cinerea.
    Rolland S; Bruel C; Rascle C; Girard V; Billon-Grand G; Poussereau N
    Microbiology (Reading); 2009 Jun; 155(Pt 6):2097-2105. PubMed ID: 19359322
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Does botrytis cinerea Ignore H(2)O(2)-induced oxidative stress during infection? Characterization of botrytis activator protein 1.
    Temme N; Tudzynski P
    Mol Plant Microbe Interact; 2009 Aug; 22(8):987-98. PubMed ID: 19589074
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Generation and analysis of expressed sequence tags from Botrytis cinerea.
    Silva E; Valdés J; Holmes D; Shmaryahu A; Valenzuela PD
    Biol Res; 2006; 39(2):367-76. PubMed ID: 16874411
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Identification and Characterization of Botrytis Blossom Blight of Japanese Plums Caused by Botrytis cinerea and B. prunorum sp. nov. in Chile.
    Ferrada EE; Latorre BA; Zoffoli JP; Castillo A
    Phytopathology; 2016 Feb; 106(2):155-65. PubMed ID: 26474331
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The homeobox BcHOX8 gene in Botrytis cinerea regulates vegetative growth and morphology.
    Antal Z; Rascle C; Cimerman A; Viaud M; Billon-Grand G; Choquer M; Bruel C
    PLoS One; 2012; 7(10):e48134. PubMed ID: 23133556
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea.
    Chong J; Piron MC; Meyer S; Merdinoglu D; Bertsch C; Mestre P
    J Exp Bot; 2014 Dec; 65(22):6589-601. PubMed ID: 25246444
    [TBL] [Abstract][Full Text] [Related]  

  • 76. SUMOylation Inhibition Mediated by Disruption of SUMO E1-E2 Interactions Confers Plant Susceptibility to Necrotrophic Fungal Pathogens.
    Castaño-Miquel L; Mas A; Teixeira I; Seguí J; Perearnau A; Thampi BN; Schapire AL; Rodrigo N; La Verde G; Manrique S; Coca M; Lois LM
    Mol Plant; 2017 May; 10(5):709-720. PubMed ID: 28343913
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Apoptosis-like programmed cell death in the grey mould fungus Botrytis cinerea: genes and their role in pathogenicity.
    Shlezinger N; Doron A; Sharon A
    Biochem Soc Trans; 2011 Oct; 39(5):1493-8. PubMed ID: 21936840
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Functional analysis of BcBem1 and its interaction partners in Botrytis cinerea: impact on differentiation and virulence.
    Giesbert S; Siegmund U; Schumacher J; Kokkelink L; Tudzynski P
    PLoS One; 2014; 9(5):e95172. PubMed ID: 24797931
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen.
    Choquer M; Fournier E; Kunz C; Levis C; Pradier JM; Simon A; Viaud M
    FEMS Microbiol Lett; 2007 Dec; 277(1):1-10. PubMed ID: 17986079
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Phenotypical differences among B. cinerea isolates from ornamental plants.
    Martínez JA; Valdés R; Vicente MJ; Bañón S
    Commun Agric Appl Biol Sci; 2008; 73(2):121-9. PubMed ID: 19226749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.