These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 29417224)
1. Influence of dietary iron intake restriction on the development of hypertension in weanling prehypertensive rats. Okuno K; Naito Y; Yasumura S; Sawada H; Oboshi M; Nishimura K; Asakura M; Ishihara M; Masuyama T Heart Vessels; 2018 Jul; 33(7):820-825. PubMed ID: 29417224 [TBL] [Abstract][Full Text] [Related]
2. Attenuation of hypertension and renal damage in renovascular hypertensive rats by iron restriction. Oboshi M; Naito Y; Sawada H; Iwasaku T; Okuhara Y; Eguchi A; Hirotani S; Mano T; Tsujino T; Masuyama T Hypertens Res; 2016 Dec; 39(12):832-839. PubMed ID: 27439494 [TBL] [Abstract][Full Text] [Related]
3. Genistein attenuates the hypertensive effects of dietary NaCl in hypertensive male rats. Cho TM; Peng N; Clark JT; Novak L; Roysommuti S; Prasain J; Wyss JM Endocrinology; 2007 Nov; 148(11):5396-402. PubMed ID: 17673523 [TBL] [Abstract][Full Text] [Related]
4. Renal protective effects of angiotensin II receptor I antagonist CV-11974 in spontaneously hypertensive stroke-prone rats (SHR-sp). Nakamura T; Honma H; Ikeda Y; Kuroyanagi R; Takano H; Obata J; Sato T; Kimura H; Yoshida Y; Tamura K Blood Press Suppl; 1994; 5():61-6. PubMed ID: 7889203 [TBL] [Abstract][Full Text] [Related]
5. Age-dependent regulation of renal vasopressin V(1A) and V₂ receptors in rats with genetic hypertension: implications for the treatment of hypertension. Burrell LM; Risvanis J; Dean RG; Patel SK; Velkoska E; Johnston CI J Am Soc Hypertens; 2013; 7(1):3-13. PubMed ID: 23246465 [TBL] [Abstract][Full Text] [Related]
6. Tempol or candesartan prevents high-fat diet-induced hypertension and renal damage in spontaneously hypertensive rats. Chung S; Park CW; Shin SJ; Lim JH; Chung HW; Youn DY; Kim HW; Kim BS; Lee JH; Kim GH; Chang YS Nephrol Dial Transplant; 2010 Feb; 25(2):389-99. PubMed ID: 19749146 [TBL] [Abstract][Full Text] [Related]
7. Increased renal iron accumulation in hypertensive nephropathy of salt-loaded hypertensive rats. Naito Y; Sawada H; Oboshi M; Fujii A; Hirotani S; Iwasaku T; Okuhara Y; Eguchi A; Morisawa D; Ohyanagi M; Tsujino T; Masuyama T PLoS One; 2013; 8(10):e75906. PubMed ID: 24116080 [TBL] [Abstract][Full Text] [Related]
8. Renoprotective effects of carvedilol in hypertensive-stroke prone rats may involve inhibition of TGF beta expression. Wong VY; Laping NJ; Nelson AH; Contino LC; Olson BA; Gygielko E; Campbell WG; Barone F; Brooks DP Br J Pharmacol; 2001 Nov; 134(5):977-84. PubMed ID: 11682445 [TBL] [Abstract][Full Text] [Related]
10. Effect of iron restriction on renal damage and mineralocorticoid receptor signaling in a rat model of chronic kidney disease. Naito Y; Fujii A; Sawada H; Hirotani S; Iwasaku T; Eguchi A; Ohyanagi M; Tsujino T; Masuyama T J Hypertens; 2012 Nov; 30(11):2192-201. PubMed ID: 22922699 [TBL] [Abstract][Full Text] [Related]
12. Altered iron homeostasis in an animal model of hypertensive nephropathy: stroke-prone rats. Gelosa P; Pignieri A; Gianazza E; Criniti S; Guerrini U; Cappellini MD; Banfi C; Tremoli E; Sironi L J Hypertens; 2013 Nov; 31(11):2259-69. PubMed ID: 24029866 [TBL] [Abstract][Full Text] [Related]
13. Vascular smooth muscle cell NAD(P)H oxidase activity during the development of hypertension: Effect of angiotensin II and role of insulinlike growth factor-1 receptor transactivation. Cruzado MC; Risler NR; Miatello RM; Yao G; Schiffrin EL; Touyz RM Am J Hypertens; 2005 Jan; 18(1):81-7. PubMed ID: 15691621 [TBL] [Abstract][Full Text] [Related]
14. Changes of blood pressure in spontaneously hypertensive rats dependent on the quantity and quality of fat intake. Moritz V; Singer P; Förster D; Berger I; Massow S Biomed Biochim Acta; 1985; 44(10):1491-505. PubMed ID: 4084253 [TBL] [Abstract][Full Text] [Related]
15. Benazepril, an angiotensin-converting enzyme inhibitor, alleviates renal injury in spontaneously hypertensive rats by inhibiting advanced glycation end-product-mediated pathways. Liu XP; Pang YJ; Zhu WW; Zhao TT; Zheng M; Wang YB; Sun ZJ; Sun SJ Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):287-96. PubMed ID: 19018797 [TBL] [Abstract][Full Text] [Related]
16. Influence of age and dietary sodium on the cardiovascular and renal effects of ramipril in spontaneously hypertensive rats. Teräväinen TL; Mervaala EM; Pörsti I; Laakso J; Vapaatalo H; Karppanen H Methods Find Exp Clin Pharmacol; 1997 Jun; 19(5):311-21. PubMed ID: 9379779 [TBL] [Abstract][Full Text] [Related]
17. Age dependency of the effects of dietary sodium restriction on blood pressure in spontaneously hypertensive rats. Wilczynski EA; Leenen FH J Hypertens Suppl; 1985 Dec; 3(3):S435-7. PubMed ID: 2856759 [TBL] [Abstract][Full Text] [Related]
18. Low-sodium diet and alpha-adrenoceptors of renal basolateral membrane in spontaneously hypertensive rats. Sunagawa O; Fukiyama K; Noda Y; Kimura Y; Eto T J Hypertens; 1991 Oct; 9(10):901-8. PubMed ID: 1658132 [TBL] [Abstract][Full Text] [Related]