These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

556 related articles for article (PubMed ID: 29417375)

  • 21. Standard Cellular Testing Conditions Generate an Exaggerated Nanoparticle Cytotoxicity Profile.
    Manshian BB; Himmelreich U; Soenen SJ
    Chem Res Toxicol; 2017 Feb; 30(2):595-603. PubMed ID: 27982583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PD-L1 siRNA Theranostics With a Dextran Nanoparticle Highlights the Importance of Nanoparticle Delivery for Effective Tumor PD-L1 Downregulation.
    Pacheco-Torres J; Penet MF; Krishnamachary B; Mironchik Y; Chen Z; Bhujwalla ZM
    Front Oncol; 2020; 10():614365. PubMed ID: 33718115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanobiological Analysis of Nanoparticle Toxicity.
    Ketebo AA; Din SU; Lee G; Park S
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanomaterials and nanoparticles: sources and toxicity.
    Buzea C; Pacheco II; Robbie K
    Biointerphases; 2007 Dec; 2(4):MR17-71. PubMed ID: 20419892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probe the nanoparticle-nucleus interaction
    Zhang L; Liu N; Wang X
    Phys Chem Chem Phys; 2023 Nov; 25(44):30319-30329. PubMed ID: 37908190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Screening Priority Factors Determining and Predicting the Reproductive Toxicity of Various Nanoparticles.
    Ban Z; Zhou Q; Sun A; Mu L; Hu X
    Environ Sci Technol; 2018 Sep; 52(17):9666-9676. PubMed ID: 30059221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles.
    Manshian BB; Pfeiffer C; Pelaz B; Heimerl T; Gallego M; Möller M; del Pino P; Himmelreich U; Parak WJ; Soenen SJ
    ACS Nano; 2015 Oct; 9(10):10431-44. PubMed ID: 26327399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review.
    Abbasi R; Shineh G; Mobaraki M; Doughty S; Tayebi L
    J Nanopart Res; 2023; 25(3):43. PubMed ID: 36875184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Toxicity of Polystyrene-Based Nanoparticles in
    Ozbek O; O Ulgen K; Ileri Ercan N
    Chem Res Toxicol; 2021 Apr; 34(4):1055-1068. PubMed ID: 33710856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence nanoparticles "quantum dots" as drug delivery system and their toxicity: a review.
    Ghaderi S; Ramesh B; Seifalian AM
    J Drug Target; 2011 Aug; 19(7):475-86. PubMed ID: 20964619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoneurotoxicity to nanoneuroprotection using biological and computational approaches.
    Iqbal A; Ahmad I; Khalid MH; Nawaz MS; Gan SH; Kamal MA
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2013; 31(3):256-84. PubMed ID: 24024521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods.
    Agha A; Waheed W; Stiharu I; Nerguizian V; Destgeer G; Abu-Nada E; Alazzam A
    Discov Nano; 2023 Feb; 18(1):18. PubMed ID: 36800044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles.
    Poirier I; Kuhn L; Demortière A; Mirvaux B; Hammann P; Chicher J; Caplat C; Pallud M; Bertrand M
    J Proteomics; 2016 Oct; 148():213-27. PubMed ID: 27523480
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoparticles in practice for molecular-imaging applications: An overview.
    Padmanabhan P; Kumar A; Kumar S; Chaudhary RK; Gulyás B
    Acta Biomater; 2016 Sep; 41():1-16. PubMed ID: 27265153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances in nanoparticle carriers for photodynamic therapy.
    Yi G; Hong SH; Son J; Yoo J; Park C; Choi Y; Koo H
    Quant Imaging Med Surg; 2018 May; 8(4):433-443. PubMed ID: 29928608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatially confined assembly of nanoparticles.
    Jiang L; Chen X; Lu N; Chi L
    Acc Chem Res; 2014 Oct; 47(10):3009-17. PubMed ID: 25244100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A high-throughput bioimaging study to assess the impact of chitosan-based nanoparticle degradation on DNA delivery performance.
    Gomes CP; Varela-Moreira A; Leiro V; Lopes CDF; Moreno PMD; Gomez-Lazaro M; Pêgo AP
    Acta Biomater; 2016 Dec; 46():129-140. PubMed ID: 27686038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The biologically effective dose in inhalation nanotoxicology.
    Donaldson K; Schinwald A; Murphy F; Cho WS; Duffin R; Tran L; Poland C
    Acc Chem Res; 2013 Mar; 46(3):723-32. PubMed ID: 23003923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery.
    Cheng J; Teply BA; Sherifi I; Sung J; Luther G; Gu FX; Levy-Nissenbaum E; Radovic-Moreno AF; Langer R; Farokhzad OC
    Biomaterials; 2007 Feb; 28(5):869-76. PubMed ID: 17055572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding nanoparticle cellular entry: A physicochemical perspective.
    Beddoes CM; Case CP; Briscoe WH
    Adv Colloid Interface Sci; 2015 Apr; 218():48-68. PubMed ID: 25708746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.