BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29417481)

  • 1. Effect of planting density and harvest protocol on field-scale phytoremediation efficiency by Eucalyptus globulus.
    Luo J; He M; Qi S; Wu J; Gu XS
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11343-11350. PubMed ID: 29417481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A real scale phytoremediation of multi-metal contaminated e-waste recycling site with Eucalyptus globulus assisted by electrical fields.
    Luo J; Wu J; Huo S; Qi S; Gu XS
    Chemosphere; 2018 Jun; 201():262-268. PubMed ID: 29525653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-technique phytoremediation approach to purify metals contaminated soil from e-waste recycling site.
    Luo J; Cai L; Qi S; Wu J; Sophie Gu X
    J Environ Manage; 2017 Dec; 204(Pt 1):17-22. PubMed ID: 28846891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation efficiency OF CD by Eucalyptus globulus transplanted from polluted and unpolluted sites.
    Luo J; Qi S; Peng L; Wang J
    Int J Phytoremediation; 2016; 18(4):308-14. PubMed ID: 26458117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation potential of cadmium-contaminated soil by Eucalyptus globulus under different coppice systems.
    Luo J; Qi S; Peng L; Xie X
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):321-5. PubMed ID: 25543544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Balance Between Soil Remediation and Economic Benefits of Eucalyptus globulus.
    Xing Y; Wang Z; Zhang C; He W; Luo J
    Bull Environ Contam Toxicol; 2019 Jun; 102(6):887-891. PubMed ID: 30976836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement effects of cytokinin on EDTA assisted phytoremediation and the associated environmental risks.
    Luo J; Cai L; Qi S; Wu J; Gu XWS
    Chemosphere; 2017 Oct; 185():386-393. PubMed ID: 28709043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of direct and alternating current electric fields on efficiency promotion and leaching risk alleviation of chelator assisted phytoremediation.
    Luo J; Cai L; Qi S; Wu J; Sophie Gu X
    Ecotoxicol Environ Saf; 2018 Mar; 149():241-247. PubMed ID: 29241117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The phytoremediation efficiency of Eucalyptus globulus treated by static magnetic fields before sowing.
    Luo J; He W; Xing X; Wu J; Gu XWS
    Chemosphere; 2019 Jul; 226():891-897. PubMed ID: 31509918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing storage battery and solar cell in assisting Eucalyptus Globulus to phytoremediate soil polluted by Cd, Pb, and Cu.
    Luo J; He M; Wu J; Huo S; Gu XS
    Int J Phytoremediation; 2019; 21(3):181-190. PubMed ID: 30656980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of Eucalyptus globulus to red and blue light with different combinations and their influence on its efficacy for contaminated soil phytoremediation.
    Luo J; He W; Wu J; Sophie Gu X
    J Environ Manage; 2019 Jul; 241():235-242. PubMed ID: 31005001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems.
    Luo J; Qi S; Gu XW; Wang J; Xie X
    Ecotoxicology; 2016 May; 25(4):646-54. PubMed ID: 26846211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Planting Density on the Phytoremediation Efficiency of Festuca arundinacea in cd-Polluted Soil.
    Qin Y; Shi X; Wang Z; Pei C; Cao M; Luo J
    Bull Environ Contam Toxicol; 2021 Jul; 107(1):154-159. PubMed ID: 33830282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecological Risk Assessment of EDTA-Assisted Phytoremediation of Cd Under Different Cultivation Systems.
    Luo J; Qi S; Gu X; Hou T; Lin L
    Bull Environ Contam Toxicol; 2016 Feb; 96(2):259-64. PubMed ID: 26499324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation: Metal decontamination of soils after the sequential forestation of former opencast coal land.
    Desai M; Haigh M; Walkington H
    Sci Total Environ; 2019 Mar; 656():670-680. PubMed ID: 30529970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rotation of white lupin (Lupinus albus L.) with metal-accumulating plant crops: a strategy to increase the benefits of soil phytoremediation.
    Fumagalli P; Comolli R; Ferrè C; Ghiani A; Gentili R; Citterio S
    J Environ Manage; 2014 Dec; 145():35-42. PubMed ID: 24992047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using solar cell to phytoremediate field-scale metal polluted soil assisted by electric field.
    Luo J; Yang D; Qi S; Wu J; Gu XS
    Ecotoxicol Environ Saf; 2018 Dec; 165():404-410. PubMed ID: 30218963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal remediation with Ficus microcarpa through transplantation and its environmental risks through field scale experiment.
    Luo J; Cai L; Qi S; Wu J; Gu XS
    Chemosphere; 2018 Feb; 193():244-250. PubMed ID: 29136571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of growth, photosynthetic capacity and water stress in Eucalyptus globulus coppice regrowth and seedlings during early development.
    Drake PL; Mendham DS; White DA; Ogden GN
    Tree Physiol; 2009 May; 29(5):663-74. PubMed ID: 19324701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum).
    Bi R; Schlaak M; Siefert E; Lord R; Connolly H
    Chemosphere; 2011 Apr; 83(3):318-26. PubMed ID: 21237480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.