BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 29417931)

  • 21. Multimaterial 3D Printed Fluidic Device for Measuring Pharmaceuticals in Biological Fluids.
    Li F; Macdonald NP; Guijt RM; Breadmore MC
    Anal Chem; 2019 Feb; 91(3):1758-1763. PubMed ID: 30513198
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Droplet-on-a-wristband: chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules.
    Fan SK; Yang H; Hsu W
    Lab Chip; 2011 Jan; 11(2):343-7. PubMed ID: 20957291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct 3D-printing of cell-laden constructs in microfluidic architectures.
    Liu J; Hwang HH; Wang P; Whang G; Chen S
    Lab Chip; 2016 Apr; 16(8):1430-8. PubMed ID: 26980159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A 3D-Printed Standardized Modular Microfluidic System for Droplet Generation.
    Chen J; Huang S; Long Y; Wang K; Guan Y; Hou L; Dai B; Zhuang S; Zhang D
    Biosensors (Basel); 2022 Nov; 12(12):. PubMed ID: 36551052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Printed Microfluidic Device with Integrated Biosensors for Online Analysis of Subcutaneous Human Microdialysate.
    Gowers SA; Curto VF; Seneci CA; Wang C; Anastasova S; Vadgama P; Yang GZ; Boutelle MG
    Anal Chem; 2015 Aug; 87(15):7763-70. PubMed ID: 26070023
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Macro-to-micro interfacing to microfluidic channels using 3D-printed templates: application to time-resolved secretion sampling of endocrine tissue.
    Brooks JC; Ford KI; Holder DH; Holtan MD; Easley CJ
    Analyst; 2016 Oct; 141(20):5714-5721. PubMed ID: 27486597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Modular Microfluidic Organoid Platform Using LEGO-Like Bricks.
    Carvalho DJ; Kip AM; Tegel A; Stich M; Krause C; Romitti M; Branca C; Verhoeven B; Costagliola S; Moroni L; Giselbrecht S
    Adv Healthc Mater; 2024 May; 13(13):e2303444. PubMed ID: 38247306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional fit-to-flow microfluidic assembly.
    Chen A; Pan T
    Biomicrofluidics; 2011 Dec; 5(4):46505-465059. PubMed ID: 22276088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lab-on-a-print: from a single polymer film to three-dimensional integrated microfluidics.
    Wang W; Zhao S; Pan T
    Lab Chip; 2009 Apr; 9(8):1133-7. PubMed ID: 19350096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accessing microfluidics through feature-based design software for 3D printing.
    Shankles PG; Millet LJ; Aufrecht JA; Retterer ST
    PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D Printed Paper-Based Microfluidic Analytical Devices.
    He Y; Gao Q; Wu WB; Nie J; Fu JZ
    Micromachines (Basel); 2016 Jun; 7(7):. PubMed ID: 30404282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Culture and Sampling of Primary Adipose Tissue in Practical Microfluidic Systems.
    Brooks JC; Judd RL; Easley CJ
    Methods Mol Biol; 2017; 1566():185-201. PubMed ID: 28244052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection.
    Duarte LC; Figueredo F; Ribeiro LEB; Cortón E; Coltro WKT
    Anal Chim Acta; 2019 Sep; 1071():36-43. PubMed ID: 31128753
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D-Printed Microfluidic Devices for Enhanced Online Sampling and Direct Optical Measurements.
    Monia Kabandana GK; Jones CG; Sharifi SK; Chen C
    ACS Sens; 2020 Jul; 5(7):2044-2051. PubMed ID: 32363857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Upgrading well plates using open microfluidic patterning.
    Berry SB; Zhang T; Day JH; Su X; Wilson IZ; Berthier E; Theberge AB
    Lab Chip; 2017 Dec; 17(24):4253-4264. PubMed ID: 29164190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A survey of 3D printing technology applied to paper microfluidics.
    Fu E; Wentland L
    Lab Chip; 2021 Dec; 22(1):9-25. PubMed ID: 34897346
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of unconventional inertial microfluidic channels using wax 3D printing.
    Raoufi MA; Razavi Bazaz S; Niazmand H; Rouhi O; Asadnia M; Razmjou A; Ebrahimi Warkiani M
    Soft Matter; 2020 Mar; 16(10):2448-2459. PubMed ID: 31984393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-aligning Tetris-Like (TILE) modular microfluidic platform for mimicking multi-organ interactions.
    Ong LJY; Ching T; Chong LH; Arora S; Li H; Hashimoto M; DasGupta R; Yuen PK; Toh YC
    Lab Chip; 2019 Jun; 19(13):2178-2191. PubMed ID: 31179467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and characterization of a 3D-printed staggered herringbone mixer.
    Shenoy VJ; Edwards CE; Helgeson ME; Valentine MT
    Biotechniques; 2021 May; 70(5):285-289. PubMed ID: 34000813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.