These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29418024)

  • 1. Light Regulation of DNA Minicircle Dimerization by Utilizing Azobenzene C-Nucleosides.
    Grebenovsky N; Goldau T; Bolte M; Heckel A
    Chemistry; 2018 Mar; 24(14):3425-3428. PubMed ID: 29418024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible photoswitching of RNA hybridization at room temperature with an azobenzene C-nucleoside.
    Goldau T; Murayama K; Brieke C; Steinwand S; Mondal P; Biswas M; Burghardt I; Wachtveitl J; Asanuma H; Heckel A
    Chemistry; 2015 Feb; 21(7):2845-54. PubMed ID: 25537843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A supra-photoswitch involving sandwiched DNA base pairs and azobenzenes for light-driven nanostructures and nanodevices.
    Liang X; Mochizuki T; Asanuma H
    Small; 2009 Aug; 5(15):1761-8. PubMed ID: 19572326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Azobenzene C-Nucleosides for Photocontrolled Hybridization of DNA at Room Temperature.
    Goldau T; Murayama K; Brieke C; Asanuma H; Heckel A
    Chemistry; 2015 Dec; 21(49):17870-6. PubMed ID: 26489532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introducing LNAzo: More Rigidity for Improved Photocontrol of Oligonucleotide Hybridization.
    Grebenovsky N; Luma L; Müller P; Heckel A
    Chemistry; 2019 Sep; 25(53):12298-12302. PubMed ID: 31386225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Line up base pairs and intercalators one by one in a stable duplex.
    Liang X; Mochizuki T; Nishioka H; Asanuma H
    Nucleic Acids Symp Ser (Oxf); 2009; (53):189-90. PubMed ID: 19749324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription.
    Asanuma H; Liang X; Nishioka H; Matsunaga D; Liu M; Komiyama M
    Nat Protoc; 2007; 2(1):203-12. PubMed ID: 17401355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-driven DNA nanomachine with a photoresponsive molecular engine.
    Kamiya Y; Asanuma H
    Acc Chem Res; 2014 Jun; 47(6):1663-72. PubMed ID: 24617966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the ortho modification of azobenzene on the photoregulatory efficiency of DNA hybridization and the thermal stability of its cis form.
    Nishioka H; Liang X; Asanuma H
    Chemistry; 2010 Feb; 16(7):2054-62. PubMed ID: 20104556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoregulation of DNA hybridization by introducing an azobenzene: molecular design for more stabilization of DNA duplex with cis-azobenzene than with its trans-form.
    Liang X; Takenaka N; Nishioka H; Asanuma H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):169-70. PubMed ID: 18029640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic gene involving azobenzene-tethered T7 promoter for the photocontrol of gene expression by visible light.
    Kamiya Y; Takagi T; Ooi H; Ito H; Liang X; Asanuma H
    ACS Synth Biol; 2015 Apr; 4(4):365-70. PubMed ID: 25144622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoregulation of RNA digestion by RNase H with azobenzene-tethered DNA.
    Matsunaga D; Asanuma H; Komiyama M
    J Am Chem Soc; 2004 Sep; 126(37):11452-3. PubMed ID: 15366887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-Switchable Azobenzene-Containing Macromolecules: From UV to Near Infrared.
    Weis P; Wu S
    Macromol Rapid Commun; 2018 Jan; 39(1):. PubMed ID: 28643895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocontrol of DNA duplex formation by using azobenzene-bearing oligonucleotides.
    Asanuma H; Liang X; Yoshida T; Komiyama M
    Chembiochem; 2001 Jan; 2(1):39-44. PubMed ID: 11828425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic force spectroscopy of photoswitch-modified DNA.
    Sengupta E; Yan Y; Wang X; Munechika K; Ginger DS
    ACS Nano; 2014 Mar; 8(3):2625-31. PubMed ID: 24502655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of nucleic acids by azobenzene derivatives and their applications in biotechnology and nanotechnology.
    Li J; Wang X; Liang X
    Chem Asian J; 2014 Dec; 9(12):3344-58. PubMed ID: 25236334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Redshifted Azobenzene Photoswitches by Late-Stage Functionalization.
    Konrad DB; Frank JA; Trauner D
    Chemistry; 2016 Mar; 22(13):4364-8. PubMed ID: 26889884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Azobenzene-tethered T7 promoter for efficient photoregulation of transcription.
    Liu M; Asanuma H; Komiyama M
    J Am Chem Soc; 2006 Jan; 128(3):1009-15. PubMed ID: 16417393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unfolding of cytochrome C upon interaction with azobenzene-modified copolymers.
    Sun J; Ruchmann J; Pallier A; Jullien L; Desmadril M; Tribet C
    Biomacromolecules; 2012 Nov; 13(11):3736-46. PubMed ID: 23005031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfur and Azobenzenes, a Profitable Liaison: Straightforward Synthesis of Photoswitchable Thioglycosides with Tunable Properties.
    Berry J; Lindhorst TK; Despras G
    Chemistry; 2022 Jul; 28(39):e202200354. PubMed ID: 35537915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.