These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2941899)

  • 1. Pathways for the bioactivation of aliphatic nitriles to free cyanide in mice.
    Kaplita PV; Smith RP
    Toxicol Appl Pharmacol; 1986 Jul; 84(3):533-40. PubMed ID: 2941899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative toxicities of aliphatic nitriles.
    Ahmed AE; Farooqui MY
    Toxicol Lett; 1982 Jul; 12(2-3):157-63. PubMed ID: 6287676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-acute toxicity relationship of dinitriles in mice.
    Tanii H; Hashimoto K
    Arch Toxicol; 1985 Jun; 57(2):88-93. PubMed ID: 4026577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of cytochrome P-450 IIE1 and catalase in the oxidation of acetonitrile to cyanide.
    Feierman DE; Cederbaum AI
    Chem Res Toxicol; 1989; 2(6):359-66. PubMed ID: 2519724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative metabolism of methacrylonitrile and acrylonitrile to cyanide using cytochrome P4502E1 and microsomal epoxide hydrolase-null mice.
    El Hadri L; Chanas B; Ghanayem BI
    Toxicol Appl Pharmacol; 2005 Jun; 205(2):116-25. PubMed ID: 15893539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhalation toxicology of acute exposure to aliphatic nitriles.
    Willhite CC
    Clin Toxicol; 1981 Aug; 18(8):991-1003. PubMed ID: 7318385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the mechanism of acute toxicity of nitriles in mice.
    Tanii H; Hashimoto K
    Arch Toxicol; 1984 Mar; 55(1):47-54. PubMed ID: 6732504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of organonitriles to cyanide by rat nasal tissue enzymes.
    Dahl AR; Waruszewski BA
    Xenobiotica; 1989 Nov; 19(11):1201-5. PubMed ID: 2618074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the reactivity of Pt phosphinito and molybdocene nitrile hydration catalysts with cyanohydrins.
    Ahmed TJ; Fox BR; Knapp SM; Yelle RB; Juliette JJ; Tyler DR
    Inorg Chem; 2009 Aug; 48(16):7828-37. PubMed ID: 19627135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural considerations in the metabolism of nitriles to cyanide in vivo.
    Silver EH; Kuttab SH; Hasan T; Hassan M
    Drug Metab Dispos; 1982; 10(5):495-8. PubMed ID: 6128199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of microsomal oxidation of ethanol by pyrazole and 4-methylpyrazole in vitro. Increased effectiveness after induction by pyrazole and 4-methylpyrazole.
    Feierman DE; Cederbaum AI
    Biochem J; 1986 Nov; 239(3):671-7. PubMed ID: 3827819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of cyanide liberation in the acute toxicity of aliphatic nitriles.
    Willhite CC; Smith RP
    Toxicol Appl Pharmacol; 1981 Jul; 59(3):589-602. PubMed ID: 6267734
    [No Abstract]   [Full Text] [Related]  

  • 13. Metabolism of allylnitrile to cyanide: in vitro studies.
    Farooqui MY; Ybarra B; Piper J
    Res Commun Chem Pathol Pharmacol; 1993 Sep; 81(3):355-68. PubMed ID: 8235069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute toxicity of some synthetic cyanogens in rats: time-dependent cyanide generation and cytochrome oxidase inhibition in soft tissues after sub-lethal oral intoxication.
    Rao P; Singh P; Yadav SK; Gujar NL; Bhattacharya R
    Food Chem Toxicol; 2013 Sep; 59():595-609. PubMed ID: 23831730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of ethanol on the in vivo and in vitro metabolism of nitriles in mice.
    Tanii H; Hashimoto K
    Arch Toxicol; 1986 Feb; 58(3):171-6. PubMed ID: 3964080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of in vivo administration of dimethyl sulfoxide on the in vitro metabolism of some monocyclic aromatic chemicals by hepatic microsomal preparations.
    Stock BH; Fouts JR
    Toxicol Appl Pharmacol; 1971 Apr; 18(4):859-68. PubMed ID: 5570238
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of human microsomal and human complementary DNA-expressed cytochromes P4501A2 and P4503A4 in the bioactivation of aflatoxin B1.
    Gallagher EP; Wienkers LC; Stapleton PL; Kunze KL; Eaton DL
    Cancer Res; 1994 Jan; 54(1):101-8. PubMed ID: 8261428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allylnitrile metabolism by CYP2E1 and other CYPs leads to distinct lethal and vestibulotoxic effects in the mouse.
    Boadas-Vaello P; Jover E; Saldaña-Ruíz S; Soler-Martín C; Chabbert C; Bayona JM; Llorens J
    Toxicol Sci; 2009 Feb; 107(2):461-72. PubMed ID: 18990727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome P450-dependent N-dealkylation of L-deprenyl in C57BL mouse liver microsomes: effects of in vivo pretreatment with ethanol, phenobarbital, beta-naphthoflavone and L-deprenyl.
    Valoti M; Fusi F; Frosini M; Pessina F; Tipton KF; Sgaragli GP
    Eur J Pharmacol; 2000 Mar; 391(3):199-206. PubMed ID: 10729359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the human P-450 enzymes responsible for the sulfoxidation and thiono-oxidation of diethyldithiocarbamate methyl ester: role of P-450 enzymes in disulfiram bioactivation.
    Madan A; Parkinson A; Faiman MD
    Alcohol Clin Exp Res; 1998 Sep; 22(6):1212-9. PubMed ID: 9756035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.