These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 29419283)
1. Trading off Aircraft Fuel Burn and NO Freeman S; Lee DS; Lim LL; Skowron A; De León RR Environ Sci Technol; 2018 Mar; 52(5):2498-2505. PubMed ID: 29419283 [TBL] [Abstract][Full Text] [Related]
2. Transport impacts on atmosphere and climate: Aviation. Lee DS; Pitari G; Grewe V; Gierens K; Penner JE; Petzold A; Prather MJ; Schumann U; Bais A; Berntsen T; Iachetti D; Lim LL; Sausen R Atmos Environ (1994); 2010 Dec; 44(37):4678-4734. PubMed ID: 32288556 [TBL] [Abstract][Full Text] [Related]
3. Mitigating the Climate Forcing of Aircraft Contrails by Small-Scale Diversions and Technology Adoption. Teoh R; Schumann U; Majumdar A; Stettler MEJ Environ Sci Technol; 2020 Mar; 54(5):2941-2950. PubMed ID: 32048502 [TBL] [Abstract][Full Text] [Related]
4. Greater fuel efficiency is potentially preferable to reducing NO Skowron A; Lee DS; De León RR; Lim LL; Owen B Nat Commun; 2021 Jan; 12(1):564. PubMed ID: 33495470 [TBL] [Abstract][Full Text] [Related]
5. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape. Helbig M; Chasmer LE; Kljun N; Quinton WL; Treat CC; Sonnentag O Glob Chang Biol; 2017 Jun; 23(6):2413-2427. PubMed ID: 27689625 [TBL] [Abstract][Full Text] [Related]
6. Mitigation effects of alternative aviation fuels on non-volatile particulate matter emissions from aircraft gas turbine engines: A review. Zhang C; Chen L; Ding S; Zhou X; Chen R; Zhang X; Yu Z; Wang J Sci Total Environ; 2022 May; 820():153233. PubMed ID: 35066040 [TBL] [Abstract][Full Text] [Related]
7. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Lee DS; Fahey DW; Skowron A; Allen MR; Burkhardt U; Chen Q; Doherty SJ; Freeman S; Forster PM; Fuglestvedt J; Gettelman A; De León RR; Lim LL; Lund MT; Millar RJ; Owen B; Penner JE; Pitari G; Prather MJ; Sausen R; Wilcox LJ Atmos Environ (1994); 2021 Jan; 244():117834. PubMed ID: 32895604 [TBL] [Abstract][Full Text] [Related]
8. Air quality and climate--synergies and trade-offs. von Schneidemesser E; Monks PS Environ Sci Process Impacts; 2013 Jul; 15(7):1315-25. PubMed ID: 23743609 [TBL] [Abstract][Full Text] [Related]
9. Global civil aviation black carbon emissions. Stettler ME; Boies AM; Petzold A; Barrett SR Environ Sci Technol; 2013 Sep; 47(18):10397-404. PubMed ID: 23844612 [TBL] [Abstract][Full Text] [Related]
11. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate. Tang X; Wilson SR; Solomon KR; Shao M; Madronich S Photochem Photobiol Sci; 2011 Feb; 10(2):280-91. PubMed ID: 21253665 [TBL] [Abstract][Full Text] [Related]
12. Uncertainties in climate assessment for the case of aviation NO. Holmes CD; Tang Q; Prather MJ Proc Natl Acad Sci U S A; 2011 Jul; 108(27):10997-1002. PubMed ID: 21690364 [TBL] [Abstract][Full Text] [Related]
13. The Greenhouse effect: impacts of ultraviolet-B (UV-B) radiation, carbon dioxide (CO2), and ozone (O3) on vegetation. Krupa SV; Kickert RN Environ Pollut; 1989; 61(4):263-393. PubMed ID: 15092357 [TBL] [Abstract][Full Text] [Related]
14. Aviation and global climate change in the 21st century. Lee DS; Fahey DW; Forster PM; Newton PJ; Wit RCN; Lim LL; Owen B; Sausen R Atmos Environ (1994); 2009 Jul; 43(22):3520-3537. PubMed ID: 32362760 [TBL] [Abstract][Full Text] [Related]
15. The contribution of China's emissions to global climate forcing. Li B; Gasser T; Ciais P; Piao S; Tao S; Balkanski Y; Hauglustaine D; Boisier JP; Chen Z; Huang M; Li LZ; Li Y; Liu H; Liu J; Peng S; Shen Z; Sun Z; Wang R; Wang T; Yin G; Yin Y; Zeng H; Zeng Z; Zhou F Nature; 2016 Mar; 531(7594):357-61. PubMed ID: 26983540 [TBL] [Abstract][Full Text] [Related]
16. Minimal Climate Impacts From Short-Lived Climate Forcers Following Emission Reductions Related to the COVID-19 Pandemic. Weber J; Shin YM; Staunton Sykes J; Archer-Nicholls S; Abraham NL; Archibald AT Geophys Res Lett; 2020 Oct; 47(20):e2020GL090326. PubMed ID: 33173249 [TBL] [Abstract][Full Text] [Related]
17. Methane emissions from vehicles. Nam EK; Jensen TE; Wallington TJ Environ Sci Technol; 2004 Apr; 38(7):2005-10. PubMed ID: 15112800 [TBL] [Abstract][Full Text] [Related]
18. Impact on short-lived climate forcers increases projected warming due to deforestation. Scott CE; Monks SA; Spracklen DV; Arnold SR; Forster PM; Rap A; Äijälä M; Artaxo P; Carslaw KS; Chipperfield MP; Ehn M; Gilardoni S; Heikkinen L; Kulmala M; Petäjä T; Reddington CLS; Rizzo LV; Swietlicki E; Vignati E; Wilson C Nat Commun; 2018 Jan; 9(1):157. PubMed ID: 29323116 [TBL] [Abstract][Full Text] [Related]
19. Management of tropospheric ozone by reducing methane emissions. West JJ; Fiore AM Environ Sci Technol; 2005 Jul; 39(13):4685-91. PubMed ID: 16053064 [TBL] [Abstract][Full Text] [Related]
20. Impact on short-lived climate forcers (SLCFs) from a realistic land-use change scenario via changes in biogenic emissions. Scott CE; Monks SA; Spracklen DV; Arnold SR; Forster PM; Rap A; Carslaw KS; Chipperfield MP; Reddington CLS; Wilson C Faraday Discuss; 2017 Aug; 200():101-120. PubMed ID: 28585973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]