BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29419371)

  • 41. Screening for peptides binding on Phytophthora capsici extracts by phage display.
    Park HY; Park HC; Yoon MY
    J Microbiol Methods; 2009 Jul; 78(1):54-8. PubMed ID: 19389430
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The high-affinity phosphodiesterase PcPdeH is involved in the polarized growth and pathogenicity of Phytophthora capsici.
    Li X; Liu Y; Tan X; Li D; Yang X; Zhang X; Zhang D
    Fungal Biol; 2020; 124(3-4):164-173. PubMed ID: 32220377
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The RXLR Effector PcAvh1 Is Required for Full Virulence of
    Chen XR; Zhang Y; Li HY; Zhang ZH; Sheng GL; Li YP; Xing YP; Huang SX; Tao H; Kuan T; Zhai Y; Ma W
    Mol Plant Microbe Interact; 2019 Aug; 32(8):986-1000. PubMed ID: 30811314
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta.
    Fang X; Zhang M; Tang Q; Wang Y; Zhang X
    Sci Rep; 2014 Mar; 4():4300. PubMed ID: 24599183
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptome signatures of tomato leaf induced by Phytophthora infestans and functional identification of transcription factor SpWRKY3.
    Cui J; Xu P; Meng J; Li J; Jiang N; Luan Y
    Theor Appl Genet; 2018 Apr; 131(4):787-800. PubMed ID: 29234827
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of microsatellites from transcriptome sequences of Phytophthora capsici and applications for population studies.
    Parada-Rojas CH; Quesada-Ocampo LM
    Sci Rep; 2018 Mar; 8(1):5194. PubMed ID: 29581516
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Increased expression of Phytophthora sojae genes encoding membrane-degrading enzymes appears to suggest an early onset of necrotrophy during Glycine max infection.
    Grams N; Ospina-Giraldo M
    Fungal Genet Biol; 2019 Dec; 133():103268. PubMed ID: 31518653
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tomato root microbiota and Phytophthora parasitica-associated disease.
    Larousse M; Rancurel C; Syska C; Palero F; Etienne C; Industri B; Nesme X; Bardin M; Galiana E
    Microbiome; 2017 May; 5(1):56. PubMed ID: 28511691
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phytophthora capsici homologue of the cell cycle regulator SDA1 is required for sporangial morphology, mycelial growth and plant infection.
    Zhu C; Yang X; Lv R; Li Z; Ding X; Tyler BM; Zhang X
    Mol Plant Pathol; 2016 Apr; 17(3):369-87. PubMed ID: 26095317
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional analysis of Pcipg2 from the straminopilous plant pathogen Phytophthora capsici.
    Sun WX; Jia YJ; Feng BZ; O'Neill NR; Zhu XP; Xie BY; Zhang XG
    Genesis; 2009 Aug; 47(8):535-44. PubMed ID: 19422018
    [TBL] [Abstract][Full Text] [Related]  

  • 51. BABA and Phytophthora nicotianae Induce Resistance to Phytophthora capsici in Chile Pepper (Capsicum annuum).
    Stamler RA; Holguin O; Dungan B; Schaub T; Sanogo S; Goldberg N; Randall JJ
    PLoS One; 2015; 10(5):e0128327. PubMed ID: 26020237
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Niche-specific metabolic adaptation in biotrophic and necrotrophic oomycetes is manifested in differential use of nutrients, variation in gene content, and enzyme evolution.
    Ah-Fong AMV; Kagda MS; Abrahamian M; Judelson HS
    PLoS Pathog; 2019 Apr; 15(4):e1007729. PubMed ID: 31002734
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Antimicrobial mechanisms of g-C
    Cai L; Huang X; Feng H; Fan G; Sun X
    Pest Manag Sci; 2024 Apr; 80(4):2096-2108. PubMed ID: 38135506
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chile (Capsicum annuum) plants transformed with the RB gene from Solanum bulbocastanum are resistant to Phytophthora capsici.
    Bagga S; Lucero Y; Apodaca K; Rajapakse W; Lujan P; Ortega JL; Sengupta-Gopalan C
    PLoS One; 2019; 14(10):e0223213. PubMed ID: 31589629
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The transcriptional reprograming and functional identification of WRKY family members in pepper's response to Phytophthora capsici infection.
    Cheng W; Jiang Y; Peng J; Guo J; Lin M; Jin C; Huang J; Tang W; Guan D; He S
    BMC Plant Biol; 2020 Jun; 20(1):256. PubMed ID: 32493221
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RNAi-Based Gene Silencing of RXLR Effectors Protects Plants Against the Oomycete Pathogen
    Cheng W; Lin M; Chu M; Xiang G; Guo J; Jiang Y; Guan D; He S
    Mol Plant Microbe Interact; 2022 Jun; 35(6):440-449. PubMed ID: 35196108
    [No Abstract]   [Full Text] [Related]  

  • 57. The ipiO gene of Phytophthora infestans is highly expressed in invading hyphae during infection.
    van West P; de Jong AJ; Judelson HS; Emons AM; Govers F
    Fungal Genet Biol; 1998 Mar; 23(2):126-38. PubMed ID: 9578626
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Phytophthora capsici RXLR Effector Targets and Inhibits a Plant PPIase to Suppress Endoplasmic Reticulum-Mediated Immunity.
    Fan G; Yang Y; Li T; Lu W; Du Y; Qiang X; Wen Q; Shan W
    Mol Plant; 2018 Aug; 11(8):1067-1083. PubMed ID: 29864524
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The dissection of R genes and locus Pc5.1 in Phytophthora capsici infection provides a novel view of disease resistance in peppers.
    Du JS; Hang LF; Hao Q; Yang HT; Ali S; Badawy RSE; Xu XY; Tan HQ; Su LH; Li HX; Zou KX; Li Y; Sun B; Lin LJ; Lai YS
    BMC Genomics; 2021 May; 22(1):372. PubMed ID: 34016054
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner.
    Li Q; Zhang M; Shen D; Liu T; Chen Y; Zhou JM; Dou D
    Sci Rep; 2016 May; 6():26951. PubMed ID: 27243217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.