These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29419773)

  • 1. The Influence of the Interlayer Distance on the Performance of Thermally Reduced Graphene Oxide Supercapacitors.
    Lin JH
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29419773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Anionic Surfactant/Ionic Liquids Intercalated Reduced Graphene Oxide for High-performance Supercapacitors.
    Lin JH
    Nanoscale Res Lett; 2018 Jul; 13(1):215. PubMed ID: 30030696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced graphene oxide/ionic liquid composites with tunable interlayer spacing for improved charge/discharge kinetics in supercapacitors.
    Korkut AS; Uralcan B
    Nanotechnology; 2023 Mar; 34(23):. PubMed ID: 36877998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene-like MoS₂/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium.
    Huang G; Chen T; Chen W; Wang Z; Chang K; Ma L; Huang F; Chen D; Lee JY
    Small; 2013 Nov; 9(21):3693-703. PubMed ID: 23766240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors.
    Pham DT; Lee TH; Luong DH; Yao F; Ghosh A; Le VT; Kim TH; Li B; Chang J; Lee YH
    ACS Nano; 2015 Feb; 9(2):2018-27. PubMed ID: 25643138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decorating Graphene Oxide with Ionic Liquid Nanodroplets: An Approach Leading to Energy-Dense, High-Voltage Supercapacitors.
    She Z; Ghosh D; Pope MA
    ACS Nano; 2017 Oct; 11(10):10077-10087. PubMed ID: 28956904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors.
    Luo J; Zhang W; Yuan H; Jin C; Zhang L; Huang H; Liang C; Xia Y; Zhang J; Gan Y; Tao X
    ACS Nano; 2017 Mar; 11(3):2459-2469. PubMed ID: 27998055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics.
    Xiao J; Zhan H; Wang X; Xu ZQ; Xiong Z; Zhang K; Simon GP; Liu JZ; Li D
    Nat Nanotechnol; 2020 Aug; 15(8):683-689. PubMed ID: 32572227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Volumetric Energy Density Asymmetric Supercapacitors Based on Well-Balanced Graphene and Graphene-MnO
    Sheng L; Jiang L; Wei T; Fan Z
    Small; 2016 Oct; 12(37):5217-5227. PubMed ID: 27483052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Investigation on 3D Graphene-CNT Hybrid Foams with Different Interactions.
    Kim HS; Lee SK; Wang M; Kang J; Sun Y; Jung JW; Kim K; Kim SM; Nam JD; Suhr J
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30200583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic liquid-induced changes in properties of aqueous cetyltrimethylammonium bromide: a comparative study of two protic ionic liquids with different anions.
    Rao VG; Ghatak C; Ghosh S; Pramanik R; Sarkar S; Mandal S; Sarkar N
    J Phys Chem B; 2011 Apr; 115(14):3828-37. PubMed ID: 21417400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced electric double layer capacitance of graphite oxide intercalated by poly(sodium 4-styrensulfonate) with high cycle stability.
    Jeong HK; Jin M; Ra EJ; Sheem KY; Han GH; Arepalli S; Lee YH
    ACS Nano; 2010 Feb; 4(2):1162-6. PubMed ID: 20099869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two Methods for Intercalation of Surfactants into Graphite Oxide.
    Hu Z; Li X; Xi L; Jiang H; Chen X; Huang Z
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1970-1976. PubMed ID: 29448694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ionic liquid-graphene oxide hybrid nanomaterial: synthesis and anticorrosive applications.
    Liu C; Qiu S; Du P; Zhao H; Wang L
    Nanoscale; 2018 May; 10(17):8115-8124. PubMed ID: 29671452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-based supercapacitor with an ultrahigh energy density.
    Liu C; Yu Z; Neff D; Zhamu A; Jang BZ
    Nano Lett; 2010 Dec; 10(12):4863-8. PubMed ID: 21058713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing.
    Chen L; Shi G; Shen J; Peng B; Zhang B; Wang Y; Bian F; Wang J; Li D; Qian Z; Xu G; Liu G; Zeng J; Zhang L; Yang Y; Zhou G; Wu M; Jin W; Li J; Fang H
    Nature; 2017 Oct; 550(7676):380-383. PubMed ID: 28992630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the electrochemical capacitive properties of graphene sheets in ionic-liquid electrolytes by correct selection of anions.
    Shi M; Kou S; Yan X
    ChemSusChem; 2014 Nov; 7(11):3053-62. PubMed ID: 25146489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional graphitized carbon nanovesicles for high-performance supercapacitors based on ionic liquids.
    Peng C; Wen Z; Qin Y; Schmidt-Mende L; Li C; Yang S; Shi D; Yang J
    ChemSusChem; 2014 Mar; 7(3):777-84. PubMed ID: 24474720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excellent capacitive performance of a three-dimensional hierarchical porous graphene/carbon composite with a superhigh surface area.
    Li XJ; Xing W; Zhou J; Wang GQ; Zhuo SP; Yan ZF; Xue QZ; Qiao SZ
    Chemistry; 2014 Oct; 20(41):13314-20. PubMed ID: 25156693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.