These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29419824)

  • 1. Massive quantum regions for simulations on bio-nanomaterials: synthetic ferritin nanocages.
    Torras J; Alemán C
    Chem Commun (Camb); 2018 Feb; 54(17):2118-2121. PubMed ID: 29419824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple active zones in hybrid QM/MM molecular dynamics simulations for large biomolecular systems.
    Torras J
    Phys Chem Chem Phys; 2015 Apr; 17(15):9959-72. PubMed ID: 25783778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Step-edge self-assembly during graphene nucleation on a nickel surface: QM/MD simulations.
    Wang Y; Page AJ; Li HB; Qian HJ; Jiao MG; Wu ZJ; Morokuma K; Irle S
    Nanoscale; 2014 Jan; 6(1):140-4. PubMed ID: 24202187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Study of Catalytic Reaction of Quercetin 2,4-Dioxygenase.
    Saito T; Kawakami T; Yamanaka S; Okumura M
    J Phys Chem B; 2015 Jun; 119(23):6952-62. PubMed ID: 25990020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal ion assisted interface re-engineering of a ferritin nanocage for enhanced biofunctions and cancer therapy.
    Wang Z; Dai Y; Wang Z; Jacobson O; Zhang F; Yung BC; Zhang P; Gao H; Niu G; Liu G; Chen X
    Nanoscale; 2018 Jan; 10(3):1135-1144. PubMed ID: 29271453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Size Flexibility of Ferritin Nanocage Opens a New Way to Prepare Nanomaterials.
    Zhang S; Zang J; Chen H; Li M; Xu C; Zhao G
    Small; 2017 Oct; 13(37):. PubMed ID: 28786527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Insight into Binary Protein Metal-Organic Frameworks with Ferritin Nanocages as Linkers and Nickel Clusters as Nodes.
    Gu C; Chen H; Wang Y; Zhang T; Wang H; Zhao G
    Chemistry; 2020 Mar; 26(14):3016-3021. PubMed ID: 31820500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferritin nanocages loaded with gold ions induce oxidative stress and apoptosis in MCF-7 human breast cancer cells.
    Monti DM; Ferraro G; Petruk G; Maiore L; Pane F; Amoresano A; Cinellu MA; Merlino A
    Dalton Trans; 2017 Nov; 46(44):15354-15362. PubMed ID: 29072740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Origin of Metal Specificity in Isatin Hydrolase from Labrenzia aggregata Investigated by Computer Simulations.
    Uribe L; Diezemann G; Gauss J; Morth JP; Cascella M
    Chemistry; 2018 Apr; 24(20):5074-5077. PubMed ID: 29243856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divalent copper ion bound amyloid-β(40) and amyloid-β(42) alloforms are less preferred than divalent zinc ion bound amyloid-β(40) and amyloid-β(42) alloforms.
    Coskuner O
    J Biol Inorg Chem; 2016 Dec; 21(8):957-973. PubMed ID: 27659954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PUPIL: A Software Integration System for Multi-Scale QM/MM-MD Simulations and Its Application to Biomolecular Systems.
    Torras J; Roberts BP; Seabra GM; Trickey SB
    Adv Protein Chem Struct Biol; 2015; 100():1-31. PubMed ID: 26415839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Norovirus RNA-dependent RNA polymerase: A computational study of metal-binding preferences.
    Shaik MM; Bhattacharjee N; Feliks M; Ng KK; Field MJ
    Proteins; 2017 Aug; 85(8):1435-1445. PubMed ID: 28383118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the polymorphic states of copper(II)-bound Aβ(1-16) peptides by computational simulations.
    Xu L; Wang X; Shan S; Wang X
    J Comput Chem; 2013 Nov; 34(29):2524-36. PubMed ID: 24037720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-lapse anomalous X-ray diffraction shows how Fe(2+) substrate ions move through ferritin protein nanocages to oxidoreductase sites.
    Pozzi C; Di Pisa F; Lalli D; Rosa C; Theil E; Turano P; Mangani S
    Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):941-53. PubMed ID: 25849404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferritin nanocages: A biological platform for drug delivery, imaging and theranostics in cancer.
    Truffi M; Fiandra L; Sorrentino L; Monieri M; Corsi F; Mazzucchelli S
    Pharmacol Res; 2016 May; 107():57-65. PubMed ID: 26968122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-dependent activity of Fe and Ni acireductone dioxygenases: how two electrons reroute the catalytic pathway.
    Sparta M; Valdez CE; Alexandrova AN
    J Mol Biol; 2013 Aug; 425(16):3007-18. PubMed ID: 23680285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Ni(ii), Cu(ii) and Zn(ii) association on the keto-enol tautomerism of thymine in the gas phase.
    Rincón E; Yáñez M; Toro-Labbé A; Mó O
    Phys Chem Chem Phys; 2007 May; 9(20):2531-7. PubMed ID: 17508085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete shift of ferritin oligomerization toward nanocage assembly via engineered protein-protein interactions.
    Ardejani MS; Chok XL; Foo CJ; Orner BP
    Chem Commun (Camb); 2013 May; 49(34):3528-30. PubMed ID: 23511498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Re-engineering protein interfaces yields copper-inducible ferritin cage assembly.
    Huard DJ; Kane KM; Tezcan FA
    Nat Chem Biol; 2013 Mar; 9(3):169-76. PubMed ID: 23340339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent penetration of carbon dots inside the ferritin nanocages: evidence for the quantum confinement effect in carbon dots.
    Bhattacharya A; Chatterjee S; Prajapati R; Mukherjee TK
    Phys Chem Chem Phys; 2015 May; 17(19):12833-40. PubMed ID: 25906758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.