These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29419836)

  • 1. Nanoscale diffusive memristor crossbars as physical unclonable functions.
    Zhang R; Jiang H; Wang ZR; Lin P; Zhuo Y; Holcomb D; Zhang DH; Yang JJ; Xia Q
    Nanoscale; 2018 Feb; 10(6):2721-2726. PubMed ID: 29419836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel true random number generator based on a stochastic diffusive memristor.
    Jiang H; Belkin D; Savel'ev SE; Lin S; Wang Z; Li Y; Joshi S; Midya R; Li C; Rao M; Barnell M; Wu Q; Yang JJ; Xia Q
    Nat Commun; 2017 Oct; 8(1):882. PubMed ID: 29026110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Halide perovskite memristors as flexible and reconfigurable physical unclonable functions.
    John RA; Shah N; Vishwanath SK; Ng SE; Febriansyah B; Jagadeeswararao M; Chang CH; Basu A; Mathews N
    Nat Commun; 2021 Jun; 12(1):3681. PubMed ID: 34140514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resilience evaluation of memristor based PUF against machine learning attacks.
    Ibrahim HM; Skovorodnikov H; Alkhzaimi H
    Sci Rep; 2024 Oct; 14(1):23962. PubMed ID: 39397035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Near-Ideal Phase-Change Memristive Physical Unclonable Functions Driven by Amorphous State Variations.
    Go SX; Wang Q; Lim KG; Lee TH; Bajalovic N; Loke DK
    Adv Sci (Weinh); 2022 Dec; 9(36):e2204453. PubMed ID: 36372549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CNT-PUFs: Highly Robust and Heat-Tolerant Carbon-Nanotube-Based Physical Unclonable Functions.
    Frank F; Böttger S; Mexis N; Anagnostopoulos NA; Mohamed A; Hartmann M; Kuhn H; Helke C; Arul T; Katzenbeisser S; Hermann S
    Nanomaterials (Basel); 2023 Nov; 13(22):. PubMed ID: 37999284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Memristor-based PUF for lightweight cryptographic randomness.
    Ibrahim HM; Abunahla H; Mohammad B; AlKhzaimi H
    Sci Rep; 2022 May; 12(1):8633. PubMed ID: 35606367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physically Unclonable Cryptographic Primitives by Chemical Vapor Deposition of Layered MoS
    Alharbi A; Armstrong D; Alharbi S; Shahrjerdi D
    ACS Nano; 2017 Dec; 11(12):12772-12779. PubMed ID: 29144734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical Unclonable Functions Based on Photothermal Effect of Gold Nanoparticles.
    Wang Z; Wang H; Li F; Gao X; Shao Y
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17954-17964. PubMed ID: 38562008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spintronic Physical Unclonable Functions Based on Field-Free Spin-Orbit-Torque Switching.
    Lee S; Kang J; Kim JM; Kim N; Han D; Lee T; Ko S; Yang J; Lee S; Lee S; Koh D; Kang MG; Lee J; Noh S; Lee H; Kwon J; Baek SC; Kim KJ; Park BG
    Adv Mater; 2022 Nov; 34(45):e2203558. PubMed ID: 36122902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disordered Mixture of Self-Assembled Molecular Functional Groups on Heterointerfaces with p-Si Leads to Multiple Key Generation in Physical Unclonable Functions.
    Lee S; Kim HH; Seo J; Jang BC; Yoo H
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1693-1703. PubMed ID: 36512688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random Organic Nanolaser Arrays for Cryptographic Primitives.
    Feng J; Wen W; Wei X; Jiang X; Cao M; Wang X; Zhang X; Jiang L; Wu Y
    Adv Mater; 2019 Sep; 31(36):e1807880. PubMed ID: 31328840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physics inspired compact modelling of [Formula: see text] based memristors.
    Yarragolla S; Du N; Hemke T; Zhao X; Chen Z; Polian I; Mussenbrock T
    Sci Rep; 2022 Nov; 12(1):20490. PubMed ID: 36443309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Secure Physically Unclonable Cryptographic Primitives Based on Interfacial Magnetic Anisotropy.
    Chen H; Song M; Guo Z; Li R; Zou Q; Luo S; Zhang S; Luo Q; Hong J; You L
    Nano Lett; 2018 Nov; 18(11):7211-7216. PubMed ID: 30365330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid low-voltage physical unclonable function based on inkjet-printed metal-oxide transistors.
    Scholz A; Zimmermann L; Gengenbach U; Koker L; Chen Z; Hahn H; Sikora A; Tahoori MB; Aghassi-Hagmann J
    Nat Commun; 2020 Nov; 11(1):5543. PubMed ID: 33139711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust Optical Physical Unclonable Function Based on Total Internal Reflection for Portable Authentication.
    Wang Z; Wang H; Wang P; Shao Y
    ACS Appl Mater Interfaces; 2024 May; 16(21):27926-27935. PubMed ID: 38743936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable and CMOS compatible silicon photonic physical unclonable functions for supply chain assurance.
    Tarik FB; Famili A; Lao Y; Ryckman JD
    Sci Rep; 2022 Sep; 12(1):15653. PubMed ID: 36123385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-Learning-Based Digitization of Protein-Self-Assembly to Print Biodegradable Physically Unclonable Labels for Device Security.
    Pradhan S; Rajagopala AD; Meno E; Adams S; Elks CR; Beling PA; Yadavalli VK
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaotic Organic Crystal Phosphorescent Patterns for Physical Unclonable Functions.
    Im H; Yoon J; Choi J; Kim J; Baek S; Park DH; Park W; Kim S
    Adv Mater; 2021 Nov; 33(44):e2102542. PubMed ID: 34514649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile and Validated Optical Authentication System Based on Physical Unclonable Functions.
    Arppe-Tabbara R; Tabbara M; Sørensen TJ
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6475-6482. PubMed ID: 30648843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.