These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29420057)

  • 81. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera).
    Jensen JS; Demiray S; Egebo M; Meyer AS
    J Agric Food Chem; 2008 Feb; 56(3):1105-15. PubMed ID: 18173238
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The role of visible and infrared spectroscopy combined with chemometrics to measure phenolic compounds in grape and wine samples.
    Cozzolino D
    Molecules; 2015 Jan; 20(1):726-37. PubMed ID: 25574817
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Winemaking biochemistry and microbiology: current knowledge and future trends.
    Moreno-Arribas MV; Polo MC
    Crit Rev Food Sci Nutr; 2005; 45(4):265-86. PubMed ID: 16047495
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Phenolic characterisation of red wines from different grape varieties cultivated in Mendoza province (Argentina).
    Fanzone M; Zamora F; Jofré V; Assof M; Gómez-Cordovés C; Peña-Neira Á
    J Sci Food Agric; 2012 Feb; 92(3):704-18. PubMed ID: 21919008
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Antioxidant properties of sparkling wines produced with β-glucanases and commercial yeast preparations.
    Rodriguez-Nogales JM; Fernández-Fernández E; Gómez M; Vila-Crespo J
    J Food Sci; 2012 Sep; 77(9):C1005-10. PubMed ID: 22900987
    [TBL] [Abstract][Full Text] [Related]  

  • 86. It's time to pop a cork on champagne's proteome!
    Cilindre C; Fasoli E; D'Amato A; Liger-Belair G; Righetti PG
    J Proteomics; 2014 Jun; 105():351-62. PubMed ID: 24594285
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Cluster Thinning and Vineyard Site Modulate the Metabolomic Profile of Ribolla Gialla Base and Sparkling Wines.
    Škrab D; Sivilotti P; Comuzzo P; Voce S; Degano F; Carlin S; Arapitsas P; Masuero D; Vrhovšek U
    Metabolites; 2021 May; 11(5):. PubMed ID: 34065397
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Effect of aging on lees and of three different dry yeast derivative products on Verdejo white wine composition and sensorial characteristics.
    Del Barrio-Galán R; Pérez-Magariño S; Ortega-Heras M; Williams P; Doco T
    J Agric Food Chem; 2011 Dec; 59(23):12433-42. PubMed ID: 22029409
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Occurrence of pyranoanthocyanins in sparkling wines manufactured with red grape varieties.
    Pozo-Bayón MA; Monagas M; Polo MC; Gómez-Cordovés C
    J Agric Food Chem; 2004 Mar; 52(5):1300-6. PubMed ID: 14995137
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Genetic determinants of the release of mannoproteins of enological interest by Saccharomyces cerevisiae.
    Gonzalez-Ramos D; Gonzalez R
    J Agric Food Chem; 2006 Dec; 54(25):9411-6. PubMed ID: 17147426
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Yeast cells in double layer calcium alginate-chitosan microcapsules for sparkling wine production.
    Benucci I; Cerreti M; Maresca D; Mauriello G; Esti M
    Food Chem; 2019 Dec; 300():125174. PubMed ID: 31330370
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Phenolics composition and antioxidant activity of wine produced from spine grape (Vitis davidii Foex) and Cherokee rose (Rosa laevigata Michx.) fruits from South China.
    Meng J; Fang Y; Gao J; Qiao L; Zhang A; Guo Z; Qin M; Huang J; Hu Y; Zhuang X
    J Food Sci; 2012 Jan; 77(1):C8-14. PubMed ID: 22181048
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Autophagy in wine making.
    Cebollero E; Rejas MT; González R
    Methods Enzymol; 2008; 451():163-75. PubMed ID: 19185720
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Differences in yeast behaviour during ageing of sparkling wines made with Charmat and Traditional methods.
    Cisilotto B; Scariot FJ; Schwarz LV; Mattos Rocha RK; Longaray Delamare AP; Echeverrigaray S
    Food Microbiol; 2023 Apr; 110():104171. PubMed ID: 36462827
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The Maillard reaction in traditional method sparkling wine.
    Charnock HM; Pickering GJ; Kemp BS
    Front Microbiol; 2022; 13():979866. PubMed ID: 36090075
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Influence of fruit maturity at harvest on the intensity of smoke taint in wine.
    Ristic R; Boss PK; Wilkinson KL
    Molecules; 2015 May; 20(5):8913-27. PubMed ID: 25993420
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Impact of caffeic acid addition on phenolic composition of tempranillo wines from different winemaking techniques.
    Aleixandre-Tudó JL; Alvarez I; Lizama V; García MJ; Aleixandre JL; Du Toit WJ
    J Agric Food Chem; 2013 Dec; 61(49):11900-12. PubMed ID: 24070179
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Influence of vinification process over the composition of volatile compounds and sensorial characteristics of greek wines.
    de Souza JC; Crupi P; Colletta A; Antonacci D; Toci AT
    J Food Sci Technol; 2022 Apr; 59(4):1499-1509. PubMed ID: 35250073
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Wine Chemical Composition and Radical Scavenging Activity of Some Cabernet Franc Clones.
    Popovic-Djordjevic J; Pejin B; Dramicanin A; Jovic S; Vujovic D; Zunic D; Ristic R
    Curr Pharm Biotechnol; 2017; 18(4):343-350. PubMed ID: 28294060
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Analysis of sparkling wine lees surface volatiles by optimized headspace solid-phase microextraction.
    Gallardo-Chacón J; Vichi S; López-Tamames E; Buxaderas S
    J Agric Food Chem; 2009 Apr; 57(8):3279-85. PubMed ID: 19281176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.