BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 29420125)

  • 1. Deep ECGNet: An Optimal Deep Learning Framework for Monitoring Mental Stress Using Ultra Short-Term ECG Signals.
    Hwang B; You J; Vaessen T; Myin-Germeys I; Park C; Zhang BT
    Telemed J E Health; 2018 Oct; 24(10):753-772. PubMed ID: 29420125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-short term HRV features as surrogates of short term HRV: a case study on mental stress detection in real life.
    Castaldo R; Montesinos L; Melillo P; James C; Pecchia L
    BMC Med Inform Decis Mak; 2019 Jan; 19(1):12. PubMed ID: 30654799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification.
    Yildirim Ö
    Comput Biol Med; 2018 May; 96():189-202. PubMed ID: 29614430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of mental stress due to oral academic examination via ultra-short-term HRV analysis.
    Castaldo R; Xu W; Melillo P; Pecchia L; Santamaria L; James C
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3805-3808. PubMed ID: 28269115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Deterministic Learning for Pattern Recognition of Different Cardiac Diseases through the Internet of Medical Things.
    Iqbal U; Wah TY; Habib Ur Rehman M; Mujtaba G; Imran M; Shoaib M
    J Med Syst; 2018 Nov; 42(12):252. PubMed ID: 30397730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings.
    Salahuddin L; Cho J; Jeong MG; Kim D
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4656-9. PubMed ID: 18003044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of Optimal Heart Rate Variability Features Based on SVM-Recursive Feature Elimination for Cumulative Stress Monitoring Using ECG Sensor.
    Park D; Lee M; Park SE; Seong JK; Youn I
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30041417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ECGNet: An Efficient Network for Detecting Premature Ventricular Complexes Based on ECG Images.
    Zhang Z; Zhang Z; Zou C; Pei Z; Yang Z; Wu J; Sun S; Gu F
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):446-458. PubMed ID: 35881595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel application of deep learning for single-lead ECG classification.
    Mathews SM; Kambhamettu C; Barner KE
    Comput Biol Med; 2018 Aug; 99():53-62. PubMed ID: 29886261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ECG-based biometric under different psychological stress states.
    Zhou R; Wang C; Zhang P; Chen X; Du L; Wang P; Zhao Z; Du M; Fang Z
    Comput Methods Programs Biomed; 2021 Apr; 202():106005. PubMed ID: 33662803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved delineation model of a standard 12-lead electrocardiogram based on a deep learning algorithm.
    Darmawahyuni A; Nurmaini S; Rachmatullah MN; Avi PP; Teguh SBP; Sapitri AI; Tutuko B; Firdaus F
    BMC Med Inform Decis Mak; 2023 Jul; 23(1):139. PubMed ID: 37507698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards End-to-End ECG Classification With Raw Signal Extraction and Deep Neural Networks.
    Xu SS; Mak MW; Cheung CC
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1574-1584. PubMed ID: 30235153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smart ECG Monitoring Patch with Built-in R-Peak Detection for Long-Term HRV Analysis.
    Lee WK; Yoon H; Park KS
    Ann Biomed Eng; 2016 Jul; 44(7):2292-301. PubMed ID: 26558395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise Detection in Electrocardiography Signal for Robust Heart Rate Variability Analysis: A Deep Learning Approach.
    Ansari S; Gryak J; Najarian K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5632-5635. PubMed ID: 30441613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modified Zeeman model for producing HRV signals and its application to ECG signal generation.
    Jafarnia-Dabanloo N; McLernon DC; Zhang H; Ayatollahi A; Johari-Majd V
    J Theor Biol; 2007 Jan; 244(2):180-9. PubMed ID: 16989869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Framework for Motion-Tolerant Instantaneous Heart Rate Estimation by Phase-Domain Multiview Dynamic Time Warping.
    Zhang Q; Zhou D; Zeng X
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2562-2574. PubMed ID: 28113198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ECG waveform generation from radar signals: A deep learning perspective.
    Chowdhury FA; Hosain MK; Bin Islam MS; Hossain MS; Basak P; Mahmud S; Murugappan M; Chowdhury MEH
    Comput Biol Med; 2024 Jun; 176():108555. PubMed ID: 38749323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability.
    Baek HJ; Cho CH; Cho J; Woo JM
    Telemed J E Health; 2015 May; 21(5):404-14. PubMed ID: 25807067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intelligent Deep Models Based on Scalograms of Electrocardiogram Signals for Biometrics.
    Byeon YH; Pan SB; Kwak KC
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heart rate variability (HRV) in deep breathing tests and 5-min short-term recordings: agreement of ear photoplethysmography with ECG measurements, in 343 subjects.
    Weinschenk SW; Beise RD; Lorenz J
    Eur J Appl Physiol; 2016 Aug; 116(8):1527-35. PubMed ID: 27278521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.