These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 29420147)

  • 1. Exercise intolerance in Type 2 diabetes: is there a cardiovascular contribution?
    Poitras VJ; Hudson RW; Tschakovsky ME
    J Appl Physiol (1985); 2018 May; 124(5):1117-1139. PubMed ID: 29420147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance.
    Poole DC; Hirai DM; Copp SW; Musch TI
    Am J Physiol Heart Circ Physiol; 2012 Mar; 302(5):H1050-63. PubMed ID: 22101528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced leg blood flow during submaximal exercise in type 2 diabetes.
    Lalande S; Gusso S; Hofman PL; Baldi JC
    Med Sci Sports Exerc; 2008 Apr; 40(4):612-7. PubMed ID: 18317387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle deoxygenation after the onset of moderate exercise suggests slowed microvascular blood flow kinetics in type 2 diabetes.
    Bauer TA; Reusch JE; Levi M; Regensteiner JG
    Diabetes Care; 2007 Nov; 30(11):2880-5. PubMed ID: 17675540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans.
    González-Alonso J; Calbet JA
    Circulation; 2003 Feb; 107(6):824-30. PubMed ID: 12591751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of high-intensity interval training on central haemodynamics and skeletal muscle oxygenation during exercise in patients with chronic heart failure.
    Spee RF; Niemeijer VM; Wijn PF; Doevendans PA; Kemps HM
    Eur J Prev Cardiol; 2016 Dec; 23(18):1943-1952. PubMed ID: 27440661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiovascular control during exercise in type 2 diabetes mellitus.
    Green S; Egaña M; Baldi JC; Lamberts R; Regensteiner JG
    J Diabetes Res; 2015; 2015():654204. PubMed ID: 25918732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation of local and global skeletal muscle oxygen transport metrics in type 2 diabetes.
    Mason McClatchey P; Bauer TA; Regensteiner JG; Schauer IE; Huebschmann AG; Reusch JEB
    J Diabetes Complications; 2017 Aug; 31(8):1311-1317. PubMed ID: 28571935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soothing the sleeping giant: improving skeletal muscle oxygen kinetics and exercise intolerance in HFpEF.
    Sarma S; Levine BD
    J Appl Physiol (1985); 2015 Sep; 119(6):734-8. PubMed ID: 26048977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiovascular control during concomitant dynamic leg exercise and static arm exercise in humans.
    Strange S
    J Physiol; 1999 Jan; 514 ( Pt 1)(Pt 1):283-91. PubMed ID: 9831733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac output, oxygen consumption and muscle oxygen delivery in submaximal exercise. Normal and low O2 states.
    Wolff CB
    Adv Exp Med Biol; 2003; 510():279-84. PubMed ID: 12580441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiovascular consequences of exercise hyperpnea.
    Harms CA; Dempsey JA
    Exerc Sport Sci Rev; 1999; 27():37-62. PubMed ID: 10791013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Type 2 diabetes and reduced exercise tolerance: a review of the literature through an integrated physiology approach.
    Nesti L; Pugliese NR; Sciuto P; Natali A
    Cardiovasc Diabetol; 2020 Sep; 19(1):134. PubMed ID: 32891175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics and effectiveness of vasodilatory and pressor compensation for reduced relaxation time during rhythmic forearm contractions.
    Bentley RF; Poitras VJ; Hong T; Tschakovsky ME
    Exp Physiol; 2017 Jun; 102(6):621-634. PubMed ID: 28397384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary nitrate restores compensatory vasodilation and exercise capacity in response to a compromise in oxygen delivery in the noncompensator phenotype.
    Bentley RF; Walsh JJ; Drouin PJ; Velickovic A; Kitner SJ; Fenuta AM; Tschakovsky ME
    J Appl Physiol (1985); 2017 Sep; 123(3):594-605. PubMed ID: 28596274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory muscle unloading improves leg muscle oxygenation during exercise in patients with COPD.
    Borghi-Silva A; Oliveira CC; Carrascosa C; Maia J; Berton DC; Queiroga F; Ferreira EM; Almeida DR; Nery LE; Neder JA
    Thorax; 2008 Oct; 63(10):910-5. PubMed ID: 18492743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Value of training-induced effects on arterial vascular system and skeletal muscles in therapy of NYHA II/III heart failure].
    Huonker M; Keul J
    Z Kardiol; 2001 Nov; 90(11):813-23. PubMed ID: 11771449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relation between cardiac output kinetics and skeletal muscle oxygenation during moderate exercise in moderately impaired patients with chronic heart failure.
    Spee RF; Niemeijer VM; Schoots T; Wijn PF; Doevendans PA; Kemps HM
    J Appl Physiol (1985); 2016 Jul; 121(1):198-204. PubMed ID: 27283909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of skeletal muscle demand on cardiovascular function.
    Harms CA
    Med Sci Sports Exerc; 2000 Jan; 32(1):94-9. PubMed ID: 10647535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen exchange in muscle of young and old rats: muscle-vascular-pulmonary coupling.
    Poole DC; Ferreira LF
    Exp Physiol; 2007 Mar; 92(2):341-6. PubMed ID: 17185349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.