BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

844 related articles for article (PubMed ID: 29420223)

  • 1. Oxidative Phosphorylation as an Emerging Target in Cancer Therapy.
    Ashton TM; McKenna WG; Kunz-Schughart LA; Higgins GS
    Clin Cancer Res; 2018 Jun; 24(11):2482-2490. PubMed ID: 29420223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy Metabolism Drugs Block Triple Negative Breast Metastatic Cancer Cell Phenotype.
    Pacheco-Velázquez SC; Robledo-Cadena DX; Hernández-Reséndiz I; Gallardo-Pérez JC; Moreno-Sánchez R; Rodríguez-Enríquez S
    Mol Pharm; 2018 Jun; 15(6):2151-2164. PubMed ID: 29746779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular pathways: BRAF induces bioenergetic adaptation by attenuating oxidative phosphorylation.
    Haq R; Fisher DE; Widlund HR
    Clin Cancer Res; 2014 May; 20(9):2257-63. PubMed ID: 24610826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OXPHOS inhibitors, metabolism and targeted therapies in cancer.
    Cadassou O; Jordheim LP
    Biochem Pharmacol; 2023 May; 211():115531. PubMed ID: 37019188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial respiration--an important therapeutic target in melanoma.
    Barbi de Moura M; Vincent G; Fayewicz SL; Bateman NW; Hood BL; Sun M; Suhan J; Duensing S; Yin Y; Sander C; Kirkwood JM; Becker D; Conrads TP; Van Houten B; Moschos SJ
    PLoS One; 2012; 7(8):e40690. PubMed ID: 22912665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the low inhibitory specificity of oxamate, aminooxyacetate and dichloroacetate on cancer energy metabolism.
    Moreno-Sánchez R; Marín-Hernández Á; Del Mazo-Monsalvo I; Saavedra E; Rodríguez-Enríquez S
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt A):3221-3236. PubMed ID: 27538376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue.
    Whitaker-Menezes D; Martinez-Outschoorn UE; Flomenberg N; Birbe RC; Witkiewicz AK; Howell A; Pavlides S; Tsirigos A; Ertel A; Pestell RG; Broda P; Minetti C; Lisanti MP; Sotgia F
    Cell Cycle; 2011 Dec; 10(23):4047-64. PubMed ID: 22134189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SR18292 exerts potent antitumor effects in multiple myeloma via inhibition of oxidative phosphorylation.
    Xiang Y; Fang B; Liu Y; Yan S; Cao D; Mei H; Wang Q; Hu Y; Guo T
    Life Sci; 2020 Sep; 256():117971. PubMed ID: 32553925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered energy metabolism in cancer: a unique opportunity for therapeutic intervention.
    Zhang Y; Yang JM
    Cancer Biol Ther; 2013 Feb; 14(2):81-9. PubMed ID: 23192270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The emerging role of targeting cancer metabolism for cancer therapy.
    Farhadi P; Yarani R; Dokaneheifard S; Mansouri K
    Tumour Biol; 2020 Oct; 42(10):1010428320965284. PubMed ID: 33028168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OXPHOS-targeting drugs in oncology: new perspectives.
    Kalyanaraman B; Cheng G; Hardy M; You M
    Expert Opin Ther Targets; 2023; 27(10):939-952. PubMed ID: 37736880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metformin Targets Mitochondrial Glycerophosphate Dehydrogenase to Control Rate of Oxidative Phosphorylation and Growth of Thyroid Cancer
    Thakur S; Daley B; Gaskins K; Vasko VV; Boufraqech M; Patel D; Sourbier C; Reece J; Cheng SY; Kebebew E; Agarwal S; Klubo-Gwiezdzinska J
    Clin Cancer Res; 2018 Aug; 24(16):4030-4043. PubMed ID: 29691295
    [No Abstract]   [Full Text] [Related]  

  • 13. Targeting Mitochondrial OXPHOS and Their Regulatory Signals in Prostate Cancers.
    Chen CL; Lin CY; Kung HJ
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment.
    Frattaruolo L; Brindisi M; Curcio R; Marra F; Dolce V; Cappello AR
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of Oxidative Phosphorylation on Cancer Drug Resistance.
    Zhao Z; Mei Y; Wang Z; He W
    Cancers (Basel); 2022 Dec; 15(1):. PubMed ID: 36612059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria Targeting as an Effective Strategy for Cancer Therapy.
    Ghosh P; Vidal C; Dey S; Zhang L
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32397535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drugging OXPHOS Dependency in Cancer.
    Cancer Discov; 2019 Aug; 9(8):OF10. PubMed ID: 31186236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies.
    El Hassouni B; Granchi C; Vallés-Martí A; Supadmanaba IGP; Bononi G; Tuccinardi T; Funel N; Jimenez CR; Peters GJ; Giovannetti E; Minutolo F
    Semin Cancer Biol; 2020 Feb; 60():238-248. PubMed ID: 31445217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting STAT3 and oxidative phosphorylation in oncogene-addicted tumors.
    Lee M; Hirpara JL; Eu JQ; Sethi G; Wang L; Goh BC; Wong AL
    Redox Biol; 2019 Jul; 25():101073. PubMed ID: 30594485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy transfer in "parasitic" cancer metabolism: mitochondria are the powerhouse and Achilles' heel of tumor cells.
    Martinez-Outschoorn UE; Pestell RG; Howell A; Tykocinski ML; Nagajyothi F; Machado FS; Tanowitz HB; Sotgia F; Lisanti MP
    Cell Cycle; 2011 Dec; 10(24):4208-16. PubMed ID: 22033146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.