These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
487 related articles for article (PubMed ID: 29420309)
21. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Dittler ML; Unalan I; Grünewald A; Beltrán AM; Grillo CA; Destch R; Gonzalez MC; Boccaccini AR Colloids Surf B Biointerfaces; 2019 Oct; 182():110346. PubMed ID: 31325780 [TBL] [Abstract][Full Text] [Related]
22. Fabrication and Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125 [TBL] [Abstract][Full Text] [Related]
23. Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone. Hsu YH; Turner IG; Miles AW J Mater Sci Mater Med; 2007 Dec; 18(12):2251-6. PubMed ID: 17562138 [TBL] [Abstract][Full Text] [Related]
24. Porosity of 3D biomaterial scaffolds and osteogenesis. Karageorgiou V; Kaplan D Biomaterials; 2005 Sep; 26(27):5474-91. PubMed ID: 15860204 [TBL] [Abstract][Full Text] [Related]
25. Preparation and in vitro characterization of biomorphic silk fibroin scaffolds for bone tissue engineering. Qian J; Suo A; Jin X; Xu W; Xu M J Biomed Mater Res A; 2014 Sep; 102(9):2961-71. PubMed ID: 24123779 [TBL] [Abstract][Full Text] [Related]
26. Optimization of the configuration of porous bone scaffolds made of Polyamide/Hydroxyapatite composites using Selective Laser Sintering for tissue engineering applications. Ramu M; Ananthasubramanian M; Kumaresan T; Gandhinathan R; Jothi S Biomed Mater Eng; 2018; 29(6):739-755. PubMed ID: 30282331 [TBL] [Abstract][Full Text] [Related]
27. Fabrication of Hydroxyapatite with Bioglass Nanocomposite for Human Wharton's-Jelly-Derived Mesenchymal Stem Cell Growing Substrate. Ebrahimi S; Hanim YU; Sipaut CS; Jan NBA; Arshad SE; How SE Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502544 [TBL] [Abstract][Full Text] [Related]
28. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro. Kim SS; Park MS; Gwak SJ; Choi CY; Kim BS Tissue Eng; 2006 Oct; 12(10):2997-3006. PubMed ID: 17506618 [TBL] [Abstract][Full Text] [Related]
29. Mechanical properties of highly porous PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering. Blaker JJ; Maquet V; Jérôme R; Boccaccini AR; Nazhat SN Acta Biomater; 2005 Nov; 1(6):643-52. PubMed ID: 16701845 [TBL] [Abstract][Full Text] [Related]
30. Nanocomposite scaffolds with tunable mechanical and degradation capabilities: co-delivery of bioactive agents for bone tissue engineering. Cattalini JP; Roether J; Hoppe A; Pishbin F; Haro Durand L; Gorustovich A; Boccaccini AR; Lucangioli S; Mouriño V Biomed Mater; 2016 Oct; 11(6):065003. PubMed ID: 27767020 [TBL] [Abstract][Full Text] [Related]
31. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration. Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946 [TBL] [Abstract][Full Text] [Related]
32. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Chen Y; Kawazoe N; Chen G Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161 [TBL] [Abstract][Full Text] [Related]
33. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Rezwan K; Chen QZ; Blaker JJ; Boccaccini AR Biomaterials; 2006 Jun; 27(18):3413-31. PubMed ID: 16504284 [TBL] [Abstract][Full Text] [Related]
34. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques. Grottkau BE; Hui Z; Yao Y; Pang Y Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906530 [TBL] [Abstract][Full Text] [Related]
35. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration. Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454 [TBL] [Abstract][Full Text] [Related]
36. Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Zhang Y; Chen L; Zeng J; Zhou K; Zhang D Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():143-9. PubMed ID: 24863210 [TBL] [Abstract][Full Text] [Related]
37. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X; Miao X J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281 [TBL] [Abstract][Full Text] [Related]
38. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
39. [In vivo experiment of porous bioactive bone cement modified by bioglass and chitosan]. Li Y; Lei W; Wang Z; Zhang Y; Niu E; Yu L; Wu J; Zang Y; Liu Z; Wu Z Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Mar; 27(3):320-5. PubMed ID: 23672134 [TBL] [Abstract][Full Text] [Related]
40. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering. Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]