These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 29420480)

  • 1. Dynamics and number of trans-SNARE complexes determine nascent fusion pore properties.
    Bao H; Das D; Courtney NA; Jiang Y; Briguglio JS; Lou X; Roston D; Cui Q; Chanda B; Chapman ER
    Nature; 2018 Feb; 554(7691):260-263. PubMed ID: 29420480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dilation of fusion pores by crowding of SNARE proteins.
    Wu Z; Bello OD; Thiyagarajan S; Auclair SM; Vennekate W; Krishnakumar SS; O'Shaughnessy B; Karatekin E
    Elife; 2017 Mar; 6():. PubMed ID: 28346138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains.
    Wu Z; Auclair SM; Bello O; Vennekate W; Dudzinski NR; Krishnakumar SS; Karatekin E
    Sci Rep; 2016 Jun; 6():27287. PubMed ID: 27264104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol stabilizes recombinant exocytic fusion pores by altering membrane bending rigidity.
    Wu L; Courtney KC; Chapman ER
    Biophys J; 2021 Apr; 120(8):1367-1377. PubMed ID: 33582136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exocytotic fusion pores are composed of both lipids and proteins.
    Bao H; Goldschen-Ohm M; Jeggle P; Chanda B; Edwardson JM; Chapman ER
    Nat Struct Mol Biol; 2016 Jan; 23(1):67-73. PubMed ID: 26656855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolving kinetic intermediates during the regulated assembly and disassembly of fusion pores.
    Das D; Bao H; Courtney KC; Wu L; Chapman ER
    Nat Commun; 2020 Jan; 11(1):231. PubMed ID: 31932584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fusion pores, SNAREs, and exocytosis.
    Vardjan N; Jorgacevski J; Zorec R
    Neuroscientist; 2013 Apr; 19(2):160-74. PubMed ID: 23019088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural role for the synaptobrevin 2 transmembrane domain in dense-core vesicle fusion pores.
    Chang CW; Hui E; Bai J; Bruns D; Chapman ER; Jackson MB
    J Neurosci; 2015 Apr; 35(14):5772-80. PubMed ID: 25855187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SNARE-mediated Fusion of Single Proteoliposomes with Tethered Supported Bilayers in a Microfluidic Flow Cell Monitored by Polarized TIRF Microscopy.
    Nikolaus J; Karatekin E
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27585113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol Increases the Openness of SNARE-Mediated Flickering Fusion Pores.
    Stratton BS; Warner JM; Wu Z; Nikolaus J; Wei G; Wagnon E; Baddeley D; Karatekin E; O'Shaughnessy B
    Biophys J; 2016 Apr; 110(7):1538-1550. PubMed ID: 27074679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism of fusion pore formation driven by the neuronal SNARE complex.
    Sharma S; Lindau M
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12751-12756. PubMed ID: 30482862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SNARE proteins: one to fuse and three to keep the nascent fusion pore open.
    Shi L; Shen QT; Kiel A; Wang J; Wang HW; Melia TJ; Rothman JE; Pincet F
    Science; 2012 Mar; 335(6074):1355-9. PubMed ID: 22422984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion.
    Lynch KL; Gerona RR; Kielar DM; Martens S; McMahon HT; Martin TF
    Mol Biol Cell; 2008 Dec; 19(12):5093-103. PubMed ID: 18799625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Nanodisc-Cell Fusion Assay with Single-Pore Sensitivity and Sub-millisecond Time Resolution.
    Dudzinski NR; Wu Z; Karatekin E
    Methods Mol Biol; 2019; 1860():263-275. PubMed ID: 30317511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two distinct modes of exocytotic fusion pore expansion in large astrocytic vesicles.
    Peng H; Kang N; Xu J; Stanton PK; Kang J
    J Biol Chem; 2013 Jun; 288(23):16872-16881. PubMed ID: 23620588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic actions of v-SNARE transmembrane domains and membrane-curvature modifying lipids in neurotransmitter release.
    Dhara M; Mantero Martinez M; Makke M; Schwarz Y; Mohrmann R; Bruns D
    Elife; 2020 May; 9():. PubMed ID: 32391794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steric hindrance of SNARE transmembrane domain organization impairs the hemifusion-to-fusion transition.
    D'Agostino M; Risselada HJ; Mayer A
    EMBO Rep; 2016 Nov; 17(11):1590-1608. PubMed ID: 27644261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropic forces drive self-organization and membrane fusion by SNARE proteins.
    Mostafavi H; Thiyagarajan S; Stratton BS; Karatekin E; Warner JM; Rothman JE; O'Shaughnessy B
    Proc Natl Acad Sci U S A; 2017 May; 114(21):5455-5460. PubMed ID: 28490503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Transmembrane Domain of Synaptobrevin Influences Neurotransmitter Flux through Synaptic Fusion Pores.
    Chiang CW; Chang CW; Jackson MB
    J Neurosci; 2018 Aug; 38(32):7179-7191. PubMed ID: 30012692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single vesicle millisecond fusion kinetics reveals number of SNARE complexes optimal for fast SNARE-mediated membrane fusion.
    Domanska MK; Kiessling V; Stein A; Fasshauer D; Tamm LK
    J Biol Chem; 2009 Nov; 284(46):32158-66. PubMed ID: 19759010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.