BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29420625)

  • 1. Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC) fluxes in seagrass populations.
    Egea LG; Jiménez-Ramos R; Hernández I; Bouma TJ; Brun FG
    PLoS One; 2018; 13(2):e0192402. PubMed ID: 29420625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate change and ocean acidification effects on seagrasses and marine macroalgae.
    Koch M; Bowes G; Ross C; Zhang XH
    Glob Chang Biol; 2013 Jan; 19(1):103-32. PubMed ID: 23504724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms and ecological role of carbon transfer within coastal seascapes.
    Hyndes GA; Nagelkerken I; McLeod RJ; Connolly RM; Lavery PS; Vanderklift MA
    Biol Rev Camb Philos Soc; 2014 Feb; 89(1):232-54. PubMed ID: 23980752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon metabolism and bioavailability of dissolved organic carbon (DOC) fluxes in seagrass communities are altered under the presence of the tropical invasive alga Halimeda incrassata.
    Jiménez-Ramos R; Tomas F; Reynés X; Romera-Castillo C; Pérez-Lloréns JL; Egea LG
    Sci Total Environ; 2022 Sep; 839():156325. PubMed ID: 35649455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of ocean acidification on carbon storage and sequestration in seagrass beds; a global and UK context.
    Garrard SL; Beaumont NJ
    Mar Pollut Bull; 2014 Sep; 86(1-2):138-146. PubMed ID: 25103900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of In Situ short-term temperature increase on carbon metabolism and dissolved organic carbon (DOC) fluxes in a community dominated by the seagrass Cymodocea nodosa.
    Egea LG; Jiménez-Ramos R; Hernández I; Brun FG
    PLoS One; 2019; 14(1):e0210386. PubMed ID: 30640926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the seagrass Thalassia hemprichii on coral reef mesocosms exposed to ocean acidification and experimentally elevated temperatures.
    Liu PJ; Ang SJ; Mayfield AB; Lin HJ
    Sci Total Environ; 2020 Jan; 700():134464. PubMed ID: 31689648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant and sediment properties in seagrass meadows from two Mediterranean CO
    Vizzini S; Apostolaki ET; Ricevuto E; Polymenakou P; Mazzola A
    Mar Environ Res; 2019 Apr; 146():101-108. PubMed ID: 30929836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unexpected resilience of a seagrass system exposed to global stressors.
    Hughes BB; Lummis SC; Anderson SC; Kroeker KJ
    Glob Chang Biol; 2018 Jan; 24(1):224-234. PubMed ID: 28752587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance and recovery of benthic marine macrophyte communities to light reduction: Insights from carbon metabolism and dissolved organic carbon (DOC) fluxes, and implications for resilience.
    Jiménez-Ramos R; Brun FG; Pérez-Lloréns JL; Vergara JJ; Delgado-Cabezas F; Sena-Soria N; Egea LG
    Mar Pollut Bull; 2023 Mar; 188():114630. PubMed ID: 36708615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow.
    Koweek DA; Zimmerman RC; Hewett KM; Gaylord B; Giddings SN; Nickols KJ; Ruesink JL; Stachowicz JJ; Takeshita Y; Caldeira K
    Ecol Appl; 2018 Oct; 28(7):1694-1714. PubMed ID: 30063809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seagrass-driven changes in carbonate chemistry enhance oyster shell growth.
    Ricart AM; Gaylord B; Hill TM; Sigwart JD; Shukla P; Ward M; Ninokawa A; Sanford E
    Oecologia; 2021 Jun; 196(2):565-576. PubMed ID: 34043070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive responses of eelgrass (Zostera marina L.) to ocean warming and acidification.
    Yan W; Wang Z; Pei Y; Zhou B
    Plant Physiol Biochem; 2024 Jan; 206():108257. PubMed ID: 38064900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomewide transcriptional reprogramming in the seagrass Cymodocea nodosa under experimental ocean acidification.
    Ruocco M; Musacchia F; Olivé I; Costa MM; Barrote I; Santos R; Sanges R; Procaccini G; Silva J
    Mol Ecol; 2017 Aug; 26(16):4241-4259. PubMed ID: 28614601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Losing a winner: thermal stress and local pressures outweigh the positive effects of ocean acidification for tropical seagrasses.
    Collier CJ; Langlois L; Ow Y; Johansson C; Giammusso M; Adams MP; O'Brien KR; Uthicke S
    New Phytol; 2018 Aug; 219(3):1005-1017. PubMed ID: 29855044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate and fate of dissolved organic carbon release by seaweeds: A missing link in the coastal ocean carbon cycle.
    Paine ER; Schmid M; Boyd PW; Diaz-Pulido G; Hurd CL
    J Phycol; 2021 Oct; 57(5):1375-1391. PubMed ID: 34287891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species.
    Ow YX; Vogel N; Collier CJ; Holtum JA; Flores F; Uthicke S
    Sci Rep; 2016 Mar; 6():23093. PubMed ID: 26976685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Who wins or loses matters: Strongly interacting consumers drive seagrass resistance under ocean acidification.
    Lee J; Hughes BB; Kroeker KJ; Owens A; Wong C; Micheli F
    Sci Total Environ; 2022 Feb; 808():151594. PubMed ID: 34826463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hidden cost of pH variability in seagrass beds on marine calcifiers under ocean acidification.
    Cossa D; Infantes E; Dupont S
    Sci Total Environ; 2024 Mar; 915():170169. PubMed ID: 38244616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of Indonesian peatland degradation on downstream marine ecosystems and the global carbon cycle.
    Abrams JF; Hohn S; Rixen T; Baum A; Merico A
    Glob Chang Biol; 2016 Jan; 22(1):325-37. PubMed ID: 26416553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.