These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29420680)

  • 41. The effects of masking on the activation of auditory-associated cortex during speech listening in white noise.
    Hwang JH; Wu CW; Chen JH; Liu TC
    Acta Otolaryngol; 2006 Sep; 126(9):916-20. PubMed ID: 16864487
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detection of sinusoidal amplitude modulated sounds: deficits after bilateral lesions of auditory cortex in the rat.
    Cooke JE; Zhang H; Kelly JB
    Hear Res; 2007 Sep; 231(1-2):90-9. PubMed ID: 17629425
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Brain without Brakes: Reduced Inhibition Is Associated with Enhanced but Dysregulated Plasticity in the Aged Rat Auditory Cortex.
    Cisneros-Franco JM; Ouellet L; Kamal B; de Villers-Sidani E
    eNeuro; 2018; 5(4):. PubMed ID: 30225357
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Language experience-dependent advantage in pitch representation in the auditory cortex is limited to favorable signal-to-noise ratios.
    Suresh CH; Krishnan A; Gandour JT
    Hear Res; 2017 Nov; 355():42-53. PubMed ID: 28927640
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex.
    Moucha R; Pandya PK; Engineer ND; Rathbun DL; Kilgard MP
    Exp Brain Res; 2005 May; 162(4):417-27. PubMed ID: 15616812
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evidence for differential modulation of primary and nonprimary auditory cortex by forward masking in tinnitus.
    Roberts LE; Bosnyak DJ; Bruce IC; Gander PE; Paul BT
    Hear Res; 2015 Sep; 327():9-27. PubMed ID: 25937134
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Attention improves population-level frequency tuning in human auditory cortex.
    Okamoto H; Stracke H; Wolters CH; Schmael F; Pantev C
    J Neurosci; 2007 Sep; 27(39):10383-90. PubMed ID: 17898210
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temporal plasticity in the primary auditory cortex induced by operant perceptual learning.
    Bao S; Chang EF; Woods J; Merzenich MM
    Nat Neurosci; 2004 Sep; 7(9):974-81. PubMed ID: 15286790
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Effect of Complex Acoustic Environment during Early Development on the Responses of Auditory Cortex Neurons in Rats.
    Pysanenko K; Bureš Z; Lindovský J; Syka J
    Neuroscience; 2018 Feb; 371():221-228. PubMed ID: 29229554
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Complexity and temporal dynamics of frequency coding in the awake rat auditory cortex.
    Gaese BH; Ostwald J
    Eur J Neurosci; 2003 Nov; 18(9):2638-52. PubMed ID: 14622166
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Compensatory Plasticity in the Lateral Extrastriate Visual Cortex Preserves Audiovisual Temporal Processing following Adult-Onset Hearing Loss.
    Schormans AL; Allman BL
    Neural Plast; 2019; 2019():7946987. PubMed ID: 31223309
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of amplitude modulation of background noise on auditory-evoked magnetic fields.
    Hiraumi H; Nagamine T; Morita T; Naito Y; Fukuyama H; Ito J
    Brain Res; 2008 Nov; 1239():191-7. PubMed ID: 18778694
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Auditory perceptual learning and changes in the conceptualization of auditory cortex.
    Irvine DRF
    Hear Res; 2018 Sep; 366():3-16. PubMed ID: 29551308
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neural Correlates of Learning Pure Tones or Natural Sounds in the Auditory Cortex.
    Maor I; Shwartz-Ziv R; Feigin L; Elyada Y; Sompolinsky H; Mizrahi A
    Front Neural Circuits; 2019; 13():82. PubMed ID: 32047424
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners.
    Ross B
    Hear Res; 2018 Dec; 370():22-39. PubMed ID: 30265860
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Late Critical Period for Frequency Modulated Sweeps in the Mouse Auditory System.
    Bhumika S; Nakamura M; Valerio P; Solyga M; Lindén H; Barkat TR
    Cereb Cortex; 2020 Apr; 30(4):2586-2599. PubMed ID: 31800018
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hearing Mechanisms and Noise Metrics Related to Auditory Masking in Bottlenose Dolphins (Tursiops truncatus).
    Branstetter BK; Bakhtiari KL; Trickey JS; Finneran JJ
    Adv Exp Med Biol; 2016; 875():109-16. PubMed ID: 26610950
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Auditory discrimination training rescues developmentally degraded directional selectivity and restores mature expression of GABA(A) and AMPA receptor subunits in rat auditory cortex.
    Guo F; Zhang J; Zhu X; Cai R; Zhou X; Sun X
    Behav Brain Res; 2012 Apr; 229(2):301-7. PubMed ID: 22306199
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Corticofugal reorganization of the midbrain tonotopic map in mice.
    Yan J; Ehret G
    Neuroreport; 2001 Oct; 12(15):3313-6. PubMed ID: 11711877
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Processing of modulated sounds in the zebra finch auditory midbrain: responses to noise, frequency sweeps, and sinusoidal amplitude modulations.
    Woolley SM; Casseday JH
    J Neurophysiol; 2005 Aug; 94(2):1143-57. PubMed ID: 15817647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.