These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2942069)

  • 1. Can noncardiac muscle provide useful cardiac assistance? Preliminary studies of the properties of skeletal muscle.
    Stevens L; Brown J
    Am Surg; 1986 Aug; 52(8):423-7. PubMed ID: 2942069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Left ventricular assistance in dogs using a skeletal muscle powered device for diastolic augmentation.
    Neilson IR; Brister SJ; Khalafalla AS; Chiu RC
    J Heart Transplant; 1985 May; 4(3):343-7. PubMed ID: 2956394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ventricular-synchronous, skeletal-muscle ventricle: preliminary feasibility studies.
    Geddes LA; Janas W; Hinds M; Badylak SF; Cook J
    Pacing Clin Electrophysiol; 1993 Jun; 16(6):1310-22. PubMed ID: 7686661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Output power and metabolic input power of skeletal muscle contracting linearly to compress a pouch in a mock circulatory system.
    Geddes LA; Badylak SF; Tacker WA; Janas W
    J Thorac Cardiovasc Surg; 1992 Nov; 104(5):1435-42. PubMed ID: 1434727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming skeletal muscle for myocardial assist: a feasibility study.
    Brister S; Fradet G; Dewar M; Wittnich C; Lough J; Chiu RC
    Can J Surg; 1985 Jul; 28(4):341-4. PubMed ID: 4016607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pumping capabilities of the latissimus dorsi and rectus abdominis muscles wrapped around a valved pouch in a mock circulatory system.
    Wessale JL; Geddes LA; Badylak SF; Tacker WA; Janas W
    ASAIO Trans; 1991; 37(4):615-9. PubMed ID: 1837467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple electrical model of the circulation to explore design parameters for a skeletal muscle ventricle.
    Voytik SL; Babbs CF; Badylak SF
    J Heart Transplant; 1990; 9(2):160-74. PubMed ID: 2319376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An autologous biologic pump motor.
    Acker MA; Hammond RL; Mannion JD; Salmons S; Stephenson LW
    J Thorac Cardiovasc Surg; 1986 Oct; 92(4):733-46. PubMed ID: 3762203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new skeletal muscle linear-pull energy convertor as a power source for prosthetic circulatory support devices [corrected].
    Farrar DJ; Hill JD
    J Heart Lung Transplant; 1992; 11(5):S341-50. PubMed ID: 1420227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulated preconditioned skeletal muscle cardiomyoplasty. An effective means of cardiac assist.
    Chagas AC; Moreira LF; da Luz PL; Camarano GP; Leirner A; Stolf NA; Jatene AD
    Circulation; 1989 Nov; 80(5 Pt 2):III202-8. PubMed ID: 2805302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applied physiology of the canine rectus abdominis: force-length curves correlated with functional characteristics of a rectus powered "ventricle." Potential for cardiac assistance.
    Spotnitz HM; Merker C; Malm JR
    Trans Am Soc Artif Intern Organs; 1974; 20 B():747-55. PubMed ID: 4281133
    [No Abstract]   [Full Text] [Related]  

  • 12. Cardiac assistance with electrically stimulated skeletal muscle.
    Badylak SF; Stevens L; Janas W; Gray MH; Geddes LA; Voorhees WD
    Med Biol Eng Comput; 1989 Mar; 27(2):159-62. PubMed ID: 2532277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydraulic pouches of canine latissimus dorsi. Potential for left ventricular assistance.
    Mannion JD; Hammond R; Stephenson LW
    J Thorac Cardiovasc Surg; 1986 Apr; 91(4):534-44. PubMed ID: 3959572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional right-heart replacement with skeletal muscle ventricles.
    Bridges CR; Hammond RL; Dimeo F; Anderson WA; Stephenson LW
    Circulation; 1989 Nov; 80(5 Pt 2):III183-91. PubMed ID: 2805300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of electrically stimulated skeletal muscle to pump blood.
    Geddes LA; Badylak SF; Wessale Jl; Janas W; Bourland JD; Tacker WA; Stevens L
    Pacing Clin Electrophysiol; 1990 Mar; 13(3):344-62. PubMed ID: 1690407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of an electrically activated valve to control preload and provide maximal muscle blood flow with a skeletal-muscle ventricle.
    Geddes LA; Wessale JL; Badylak SF; Janas W; Tacker WA; Voorhees WD
    Pacing Clin Electrophysiol; 1990 Jun; 13(6):783-95. PubMed ID: 1695359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Skeletal muscle ventricle used for right ventricle assistance].
    Watanabe G; Iwa T; Misaki T; Mukai A; Tsubota M; Otake Y
    Nihon Geka Gakkai Zasshi; 1989 Jul; 90(7):1065-71. PubMed ID: 2796973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A skeletal muscle ventricle made from rectus abdominis muscle in the dog.
    Stevens L; Badylak SF; Janas W; Gray M; Geddes LA; Voorhees WD
    J Surg Res; 1989 Jan; 46(1):84-9. PubMed ID: 2915538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood flow to the latissimus dorsi muscle pouch during chronic counterpulsation stimulation.
    Gealow KK; Solien EE; Lang GR; Evanson CM; Bianco RW; Chiu RC; Shumway SJ
    J Heart Lung Transplant; 1992; 11(5):S306-14. PubMed ID: 1420222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-dependent performance of skeletal muscle pouches: implications for cardiomyoplasty.
    George DT; DiLoreto GV; Cheng W; Corin WJ; Santamore WP
    J Heart Lung Transplant; 1992; 11(5):S320-7. PubMed ID: 1420224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.