These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 29421036)
1. Enzymatically and chemically oxidized lignin nanoparticles for biomaterial applications. Mattinen ML; Valle-Delgado JJ; Leskinen T; Anttila T; Riviere G; Sipponen M; Paananen A; Lintinen K; Kostiainen M; Österberg M Enzyme Microb Technol; 2018 Apr; 111():48-56. PubMed ID: 29421036 [TBL] [Abstract][Full Text] [Related]
2. On the reactions of two fungal laccases differing in their redox potential with lignin model compounds: products and their rate of formation. Lahtinen M; Kruus K; Heinonen P; Sipilä J J Agric Food Chem; 2009 Sep; 57(18):8357-65. PubMed ID: 19702333 [TBL] [Abstract][Full Text] [Related]
3. Solvent-Resistant Lignin-Epoxy Hybrid Nanoparticles for Covalent Surface Modification and High-Strength Particulate Adhesives. Zou T; Sipponen MH; Henn A; Österberg M ACS Nano; 2021 Mar; 15(3):4811-4823. PubMed ID: 33593063 [TBL] [Abstract][Full Text] [Related]
4. Adsorption of Proteins on Colloidal Lignin Particles for Advanced Biomaterials. Leskinen T; Witos J; Valle-Delgado JJ; Lintinen K; Kostiainen M; Wiedmer SK; Österberg M; Mattinen ML Biomacromolecules; 2017 Sep; 18(9):2767-2776. PubMed ID: 28724292 [TBL] [Abstract][Full Text] [Related]
5. Purification and Characterization of a Thermostable Laccase from Trametes trogii and Its Ability in Modification of Kraft Lignin. Ai MQ; Wang FF; Huang F J Microbiol Biotechnol; 2015 Aug; 25(8):1361-70. PubMed ID: 25876603 [TBL] [Abstract][Full Text] [Related]
6. Antisolvent versus ultrasonication: Bottom-up and top-down approaches to produce lignin nanoparticles (LNPs) with tailored properties. Camargos CHM; Rezende CA Int J Biol Macromol; 2021 Dec; 193(Pt A):647-660. PubMed ID: 34699900 [TBL] [Abstract][Full Text] [Related]
7. Production of highly antioxidant lignin nanoparticles from a hardwood technical lignin. Pavaneli G; da Silva TA; Zawadzki SF; Sassaki GL; de Freitas RA; Ramos LP Int J Biol Macromol; 2024 Feb; 257(Pt 1):128612. PubMed ID: 38070366 [TBL] [Abstract][Full Text] [Related]
8. Reactivity of bacterial and fungal laccases with lignin under alkaline conditions. Moya R; Saastamoinen P; Hernández M; Suurnäkki A; Arias E; Mattinen ML Bioresour Technol; 2011 Nov; 102(21):10006-12. PubMed ID: 21908186 [TBL] [Abstract][Full Text] [Related]
9. Oxidative polymerization of lignins by laccase in water-acetone mixture. Fiţigău IF; Peter F; Boeriu CG Acta Biochim Pol; 2013; 60(4):817-22. PubMed ID: 24432339 [TBL] [Abstract][Full Text] [Related]
12. Experimental and Simulation Study of the Solvent Effects on the Intrinsic Properties of Spherical Lignin Nanoparticles. Zou T; Nonappa N; Khavani M; Vuorte M; Penttilä P; Zitting A; Valle-Delgado JJ; Elert AM; Silbernagl D; Balakshin M; Sammalkorpi M; Österberg M J Phys Chem B; 2021 Nov; 125(44):12315-12328. PubMed ID: 34723534 [TBL] [Abstract][Full Text] [Related]
13. Chemo-enzymatically prepared lignin nanoparticles for value-added applications. Henn A; Mattinen ML World J Microbiol Biotechnol; 2019 Jul; 35(8):125. PubMed ID: 31363859 [TBL] [Abstract][Full Text] [Related]
14. Comparison of laccase-catalyzed cross-linking of organosolv lignin and lignosulfonates. Gillgren T; Hedenström M; Jönsson LJ Int J Biol Macromol; 2017 Dec; 105(Pt 1):438-446. PubMed ID: 28711620 [TBL] [Abstract][Full Text] [Related]
15. Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. Frasconi M; Favero G; Boer H; Koivula A; Mazzei F Biochim Biophys Acta; 2010 Apr; 1804(4):899-908. PubMed ID: 20056172 [TBL] [Abstract][Full Text] [Related]
16. Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor. Elegir G; Bussini D; Antonsson S; Lindström ME; Zoia L Appl Microbiol Biotechnol; 2007 Dec; 77(4):809-17. PubMed ID: 17955195 [TBL] [Abstract][Full Text] [Related]
17. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy. Munk L; Andersen ML; Meyer AS Enzyme Microb Technol; 2017 Nov; 106():88-96. PubMed ID: 28859815 [TBL] [Abstract][Full Text] [Related]
18. Laccase from Melanocarpus albomyces binds effectively to cellulose. Kiiskinen LL; Palonen H; Linder M; Viikari L; Kruus K FEBS Lett; 2004 Oct; 576(1-2):251-5. PubMed ID: 15474046 [TBL] [Abstract][Full Text] [Related]
19. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Bourbonnais R; Paice MG; Reid ID; Lanthier P; Yaguchi M Appl Environ Microbiol; 1995 May; 61(5):1876-80. PubMed ID: 7646025 [TBL] [Abstract][Full Text] [Related]
20. Enzymatic crosslinking of lignin nanoparticles and nanocellulose in cryogels improves adsorption of pharmaceutical pollutants. Agustin MB; Lahtinen MH; Kemell M; Oliaei E; Mikkonen KS; Grönqvist S; Lehtonen M Int J Biol Macromol; 2024 May; 266(Pt 1):131168. PubMed ID: 38552694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]