These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29421118)

  • 41. Ozonation of the marine dinoflagellate alga Amphidinium sp.--implications for ballast water disinfection.
    Oemcke DJ; Hans van Leeuwen J
    Water Res; 2005 Dec; 39(20):5119-25. PubMed ID: 16289281
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems.
    Liew D; Linge KL; Joll CA
    Environ Monit Assess; 2016 Sep; 188(9):518. PubMed ID: 27523603
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research.
    Richardson SD; Plewa MJ; Wagner ED; Schoeny R; Demarini DM
    Mutat Res; 2007; 636(1-3):178-242. PubMed ID: 17980649
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.
    Farré MJ; Day S; Neale PA; Stalter D; Tang JY; Escher BI
    Water Res; 2013 Sep; 47(14):5409-21. PubMed ID: 23866154
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Models for estimation of the presence of non-regulated disinfection by-products in small drinking water systems.
    Guilherme S; Rodriguez MJ
    Environ Monit Assess; 2017 Oct; 189(11):577. PubMed ID: 29063230
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of approaches to quantify total residual oxidants in ballast water management systems employing chlorine for disinfection.
    Zimmer-Faust AG; Ambrose RF; Tamburri MN
    Water Sci Technol; 2014; 70(10):1585-93. PubMed ID: 25429445
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unregulated disinfection By-products in drinking water in Quebec: A meta analysis.
    Chhipi-Shrestha G; Rodriguez M; Sadiq R
    J Environ Manage; 2018 Oct; 223():984-1000. PubMed ID: 30096751
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Effects of different pre-oxidants on DBPs formation potential by chlorination and chloramination of Yangtze River raw water].
    Tian FX; Xu B; Rong R; Chen YY; Zhang TY; Zhu HZ
    Huan Jing Ke Xue; 2014 Feb; 35(2):605-10. PubMed ID: 24812954
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of effect-directed analysis to identify mutagenic nitrogenous disinfection by-products of advanced oxidation drinking water treatment.
    Vughs D; Baken KA; Kolkman A; Martijn AJ; de Voogt P
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):3951-3964. PubMed ID: 27447472
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 17β-estradiol as precursors of Cl/Br-DBPs in the disinfection process of different water samples.
    Shao Y; Pan Z; Rong C; Wang Y; Zhu H; Zhang Y; Yu K
    Environ Pollut; 2018 Oct; 241():9-18. PubMed ID: 29793109
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of the ecotoxicity and biological efficacy of ship's ballast water treatment based on hydroxyl radicals technique.
    Zhang N; Zhang Z; Bai M; Chen C; Meng X; Tian Y
    Mar Pollut Bull; 2012 Dec; 64(12):2742-8. PubMed ID: 23103029
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Shipboard trials of an ozone-based ballast water treatment system.
    Wright DA; Gensemer RW; Mitchelmore CL; Stubblefield WA; van Genderen E; Dawson R; Orano-Dawson CE; Bearr JS; Mueller RA; Cooper WJ
    Mar Pollut Bull; 2010 Sep; 60(9):1571-83. PubMed ID: 20483433
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Abiotic and biological differences in ballast water uptake and discharge samples.
    Gollasch S; David M
    Mar Pollut Bull; 2021 Mar; 164():112046. PubMed ID: 33524834
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review.
    Sadiq R; Rodriguez MJ
    Sci Total Environ; 2004 Apr; 321(1-3):21-46. PubMed ID: 15050383
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity.
    Zhang Y; Chu W; Yao D; Yin D
    J Environ Sci (China); 2017 Aug; 58():322-330. PubMed ID: 28774623
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulated and emerging disinfection by-products in recycled waters.
    Alexandrou L; Meehan BJ; Jones OAH
    Sci Total Environ; 2018 Oct; 637-638():1607-1616. PubMed ID: 29925195
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced coagulation with powdered activated carbon or MIEX secondary treatment: a comparison of disinfection by-product formation and precursor removal.
    Watson K; Farré MJ; Knight N
    Water Res; 2015 Jan; 68():454-66. PubMed ID: 25462752
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reduction of disinfection by-product precursors in reservoir water by coagulation and ultrafiltration.
    Wang F; Gao B; Ma D; Yue Q; Li R; Wang Q
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22914-22923. PubMed ID: 27578089
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ballast water sediment elemental analysis.
    Maglić L; Zec D; Frančić V
    Mar Pollut Bull; 2016 Feb; 103(1-2):93-100. PubMed ID: 26763315
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photodecomposition of iodinated contrast media and subsequent formation of toxic iodinated moieties during final disinfection with chlorinated oxidants.
    Allard S; Criquet J; Prunier A; Falantin C; Le Person A; Yat-Man Tang J; Croué JP
    Water Res; 2016 Oct; 103():453-461. PubMed ID: 27498253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.