These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29421121)

  • 21. Are greenhouse gas emissions from international shipping a type of marine pollution?
    Shi Y
    Mar Pollut Bull; 2016 Dec; 113(1-2):187-192. PubMed ID: 27637468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of green house gas emissions from Koteshwar hydropower reservoir, India.
    Kumar A; Sharma MP
    Environ Monit Assess; 2017 May; 189(5):240. PubMed ID: 28451962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Greenhouse gas and criteria emission benefits through reduction of vessel speed at sea.
    Khan MY; Agrawal H; Ranganathan S; Welch WA; Miller JW; Cocker DR
    Environ Sci Technol; 2012 Nov; 46(22):12600-7. PubMed ID: 22974075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Container fleet renewal considering multiple sulfur reduction technologies and uncertain markets amidst COVID-19.
    Zhao Y; Ye J; Zhou J
    J Clean Prod; 2021 Oct; 317():128361. PubMed ID: 34511741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Does the Effort Meet the Challenge in Promoting Low-Carbon City?-A Perspective of Global Practice.
    Lou Y; Shen L; Huang Z; Wu Y; Li H; Li G
    Int J Environ Res Public Health; 2018 Jun; 15(7):. PubMed ID: 29941856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of motor vehicle lifetime extension in climate change policy.
    Kagawa S; Nansai K; Kondo Y; Hubacek K; Suh S; Minx J; Kudoh Y; Tasaki T; Nakamura S
    Environ Sci Technol; 2011 Feb; 45(4):1184-91. PubMed ID: 21265568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality.
    Lack DA; Cappa CD; Langridge J; Bahreini R; Buffaloe G; Brock C; Cerully K; Coffman D; Hayden K; Holloway J; Lerner B; Massoli P; Li SM; McLaren R; Middlebrook AM; Moore R; Nenes A; Nuaaman I; Onasch TB; Peischl J; Perring A; Quinn PK; Ryerson T; Schwartz JP; Spackman R; Wofsy SC; Worsnop D; Xiang B; Williams E
    Environ Sci Technol; 2011 Oct; 45(20):9052-60. PubMed ID: 21910443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Benefits of improved municipal solid waste management on greenhouse gas reduction in Luangprabang, Laos.
    Vilaysouk X; Babel S
    Environ Technol; 2017 Jul; 38(13-14):1629-1637. PubMed ID: 28278091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Technical and economic evaluation of biogas capture and treatment for the Piedras Blancas landfill in Córdoba, Argentina.
    Francisca FM; Montoro MA; Glatstein DA
    J Air Waste Manag Assoc; 2017 May; 67(5):537-549. PubMed ID: 27723443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Present-day and future global bottom-up ship emission inventories including polar routes.
    Paxian A; Eyring V; Beer W; Sausen R; Wright C
    Environ Sci Technol; 2010 Feb; 44(4):1333-9. PubMed ID: 20088494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Climate policy. U.S. carbon plan relies on uncertain capture technology.
    Kintisch E
    Science; 2013 Sep; 341(6153):1438-9. PubMed ID: 24072896
    [No Abstract]   [Full Text] [Related]  

  • 32. Assessment of shipping emissions on four ports of Portugal.
    Nunes RAO; Alvim-Ferraz MCM; Martins FG; Sousa SIV
    Environ Pollut; 2017 Dec; 231(Pt 2):1370-1379. PubMed ID: 28917818
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implementation of the energy efficiency existing ship index and carbon intensity indicator on domestic ship for marine environmental protection.
    Chuah LF; Mokhtar K; Mhd Ruslan SM; Bakar AA; Abdullah MA; Osman NH; Bokhari A; Mubashir M; Show PL
    Environ Res; 2023 Apr; 222():115348. PubMed ID: 36731596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Life cycle greenhouse gas emissions from U.S. liquefied natural gas exports: implications for end uses.
    Abrahams LS; Samaras C; Griffin WM; Matthews HS
    Environ Sci Technol; 2015 Mar; 49(5):3237-45. PubMed ID: 25650513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advanced operational measure for reducing fuel consumption onboard ships.
    Elkafas AG
    Environ Sci Pollut Res Int; 2022 Dec; 29(60):90509-90519. PubMed ID: 35870069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-Run Environmental and Economic Impacts of Electrifying Waterborne Shipping in the United States.
    Gillingham KT; Huang P
    Environ Sci Technol; 2020 Aug; 54(16):9824-9833. PubMed ID: 32692544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early action to reduce greenhouse gas emissions before the commitment period of the Kyoto protocol: advantages and disadvantages.
    Michaelowa A; Rolfe C
    Environ Manage; 2001 Sep; 28(3):281-92. PubMed ID: 11531233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shipping emission forecasts and cost-benefit analysis of China ports and key regions' control.
    Liu H; Meng ZH; Shang Y; Lv ZF; Jin XX; Fu ML; He KB
    Environ Pollut; 2018 May; 236():49-59. PubMed ID: 29414374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Management-induced greenhouse gases emission mitigation in global rice production.
    Zhao X; Pu C; Ma ST; Liu SL; Xue JF; Wang X; Wang YQ; Li SS; Lal R; Chen F; Zhang HL
    Sci Total Environ; 2019 Feb; 649():1299-1306. PubMed ID: 30308900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative analysis between different methods for calculating on-board ship's emissions and energy consumption based on operational data.
    Moreno-Gutiérrez J; Pájaro-Velázquez E; Amado-Sánchez Y; Rodríguez-Moreno R; Calderay-Cayetano F; Durán-Grados V
    Sci Total Environ; 2019 Feb; 650(Pt 1):575-584. PubMed ID: 30205347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.