These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 29421211)
1. EvoStruct-Sub: An accurate Gram-positive protein subcellular localization predictor using evolutionary and structural features. Uddin MR; Sharma A; Farid DM; Rahman MM; Dehzangi A; Shatabda S J Theor Biol; 2018 Apr; 443():138-146. PubMed ID: 29421211 [TBL] [Abstract][Full Text] [Related]
2. Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou׳s general PseAAC. Dehzangi A; Heffernan R; Sharma A; Lyons J; Paliwal K; Sattar A J Theor Biol; 2015 Jan; 364():284-94. PubMed ID: 25264267 [TBL] [Abstract][Full Text] [Related]
3. Gram-positive and Gram-negative subcellular localization using rotation forest and physicochemical-based features. Dehzangi A; Sohrabi S; Heffernan R; Sharma A; Lyons J; Paliwal K; Sattar A BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S1. PubMed ID: 25734546 [TBL] [Abstract][Full Text] [Related]
4. Use of Chou's 5-steps rule to predict the subcellular localization of gram-negative and gram-positive bacterial proteins by multi-label learning based on gene ontology annotation and profile alignment. Bouziane H; Chouarfia A J Integr Bioinform; 2020 Jun; 18(1):51-79. PubMed ID: 32598314 [TBL] [Abstract][Full Text] [Related]
5. A Segmentation-Based Method to Extract Structural and Evolutionary Features for Protein Fold Recognition. Dehzangi A; Paliwal K; Lyons J; Sharma A; Sattar A IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(3):510-9. PubMed ID: 26356019 [TBL] [Abstract][Full Text] [Related]
6. Prediction of Apoptosis Protein's Subcellular Localization by Fusing Two Different Descriptors Based on Evolutionary Information. Liang Y; Zhang S Acta Biotheor; 2018 Mar; 66(1):61-78. PubMed ID: 29532347 [TBL] [Abstract][Full Text] [Related]
7. Prediction of bacterial protein subcellular localization by incorporating various features into Chou's PseAAC and a backward feature selection approach. Li L; Yu S; Xiao W; Li Y; Li M; Huang L; Zheng X; Zhou S; Yang H Biochimie; 2014 Sep; 104():100-7. PubMed ID: 24929100 [TBL] [Abstract][Full Text] [Related]
8. Predict Gram-Positive and Gram-Negative Subcellular Localization via Incorporating Evolutionary Information and Physicochemical Features Into Chou's General PseAAC. Sharma R; Dehzangi A; Lyons J; Paliwal K; Tsunoda T; Sharma A IEEE Trans Nanobioscience; 2015 Dec; 14(8):915-26. PubMed ID: 26584499 [TBL] [Abstract][Full Text] [Related]
9. Predicting protein subcellular localization based on information content of gene ontology terms. Zhang SB; Tang QR Comput Biol Chem; 2016 Dec; 65():1-7. PubMed ID: 27665466 [TBL] [Abstract][Full Text] [Related]
10. Subcellular localization prediction of apoptosis proteins based on evolutionary information and support vector machine. Xiang Q; Liao B; Li X; Xu H; Chen J; Shi Z; Dai Q; Yao Y Artif Intell Med; 2017 May; 78():41-46. PubMed ID: 28764871 [TBL] [Abstract][Full Text] [Related]
11. Subcellular location prediction of apoptosis proteins using two novel feature extraction methods based on evolutionary information and LDA. Du L; Meng Q; Chen Y; Wu P BMC Bioinformatics; 2020 May; 21(1):212. PubMed ID: 32448129 [TBL] [Abstract][Full Text] [Related]
12. A multiple information fusion method for predicting subcellular locations of two different types of bacterial protein simultaneously. Chen J; Xu H; He PA; Dai Q; Yao Y Biosystems; 2016 Jan; 139():37-45. PubMed ID: 26724384 [TBL] [Abstract][Full Text] [Related]
13. Prediction of protein subcellular localization with oversampling approach and Chou's general PseAAC. Zhang S; Duan X J Theor Biol; 2018 Jan; 437():239-250. PubMed ID: 29100918 [TBL] [Abstract][Full Text] [Related]
14. HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins. Wan S; Mak MW; Kung SY PLoS One; 2014; 9(3):e89545. PubMed ID: 24647341 [TBL] [Abstract][Full Text] [Related]
15. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier. Li ZW; You ZH; Chen X; Li LP; Huang DS; Yan GY; Nie R; Huang YA Oncotarget; 2017 Apr; 8(14):23638-23649. PubMed ID: 28423569 [TBL] [Abstract][Full Text] [Related]
16. Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model. An JY; Meng FR; You ZH; Chen X; Yan GY; Hu JP Protein Sci; 2016 Oct; 25(10):1825-33. PubMed ID: 27452983 [TBL] [Abstract][Full Text] [Related]
17. Prediction of apoptosis protein subcellular location based on position-specific scoring matrix and isometric mapping algorithm. Ruan X; Zhou D; Nie R; Hou R; Cao Z Med Biol Eng Comput; 2019 Dec; 57(12):2553-2565. PubMed ID: 31621050 [TBL] [Abstract][Full Text] [Related]
18. Proposing a highly accurate protein structural class predictor using segmentation-based features. Dehzangi A; Paliwal K; Lyons J; Sharma A; Sattar A BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S2. PubMed ID: 24564476 [TBL] [Abstract][Full Text] [Related]
19. Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and PSSM into Chou's PseAAC. Zhang S; Liang Y J Theor Biol; 2018 Nov; 457():163-169. PubMed ID: 30179589 [TBL] [Abstract][Full Text] [Related]
20. Accurate prediction of multi-label protein subcellular localization through multi-view feature learning with RBRL classifier. Zhang Q; Zhang Y; Li S; Han Y; Jin S; Gu H; Yu B Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33537726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]