These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29421549)

  • 1. Unique electrophysiological and impedance signatures between encapsulation types: An analysis of biological Utah array failure and benefit of a biomimetic coating in a rat model.
    Cody PA; Eles JR; Lagenaur CF; Kozai TDY; Cui XT
    Biomaterials; 2018 Apr; 161():117-128. PubMed ID: 29421549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic recording and electrochemical performance of amorphous silicon carbide-coated Utah electrode arrays implanted in rat motor cortex.
    Joshi-Imre A; Black BJ; Abbott J; Kanneganti A; Rihani R; Chakraborty B; Danda VR; Maeng J; Sharma R; Rieth L; Negi S; Pancrazio JJ; Cogan SF
    J Neural Eng; 2019 Aug; 16(4):046006. PubMed ID: 31013489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain.
    Golabchi A; Woeppel KM; Li X; Lagenaur CF; Cui XT
    Biosens Bioelectron; 2020 May; 155():112096. PubMed ID: 32090868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates.
    Malaga KA; Schroeder KE; Patel PR; Irwin ZT; Thompson DE; Nicole Bentley J; Lempka SF; Chestek CA; Patil PG
    J Neural Eng; 2016 Feb; 13(1):016010. PubMed ID: 26655972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explant Analysis of Utah Electrode Arrays Implanted in Human Cortex for Brain-Computer-Interfaces.
    Woeppel K; Hughes C; Herrera AJ; Eles JR; Tyler-Kabara EC; Gaunt RA; Collinger JL; Cui XT
    Front Bioeng Biotechnol; 2021; 9():759711. PubMed ID: 34950640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex.
    Rousche PJ; Normann RA
    J Neurosci Methods; 1998 Jul; 82(1):1-15. PubMed ID: 10223510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic recording and electrochemical performance of Utah microelectrode arrays implanted in rat motor cortex.
    Black BJ; Kanneganti A; Joshi-Imre A; Rihani R; Chakraborty B; Abbott J; Pancrazio JJ; Cogan SF
    J Neurophysiol; 2018 Oct; 120(4):2083-2090. PubMed ID: 30020844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance.
    Nolta NF; Christensen MB; Crane PD; Skousen JL; Tresco PA
    Biomaterials; 2015; 53():753-62. PubMed ID: 25890770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic in vivo stability assessment of carbon fiber microelectrode arrays.
    Patel PR; Zhang H; Robbins MT; Nofar JB; Marshall SP; Kobylarek MJ; Kozai TD; Kotov NA; Chestek CA
    J Neural Eng; 2016 Dec; 13(6):066002. PubMed ID: 27705958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays.
    Kozai TD; Du Z; Gugel ZV; Smith MA; Chase SM; Bodily LM; Caparosa EM; Friedlander RM; Cui XT
    J Neurosci Methods; 2015 Mar; 242():15-40. PubMed ID: 25542351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longevity and reliability of chronic unit recordings using the Utah, intracortical multi-electrode arrays.
    Sponheim C; Papadourakis V; Collinger JL; Downey J; Weiss J; Pentousi L; Elliott K; Hatsopoulos NG
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34847547
    [No Abstract]   [Full Text] [Related]  

  • 14. Electrodeposited platinum-iridium coating improves in vivo recording performance of chronically implanted microelectrode arrays.
    Cassar IR; Yu C; Sambangi J; Lee CD; Whalen JJ; Petrossians A; Grill WM
    Biomaterials; 2019 Jun; 205():120-132. PubMed ID: 30925400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of microelectrode design for cortical recording based on thermal noise considerations.
    Lempka SF; Johnson MD; Barnett DW; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3361-4. PubMed ID: 17947023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.
    Prasad A; Sanchez JC
    J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film.
    Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR
    J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
    Kim R; Nam Y
    J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.