These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat. Lethbridge R; Hou Q; Harley CW; Yuan Q PLoS One; 2012; 7(4):e35024. PubMed ID: 22496886 [TBL] [Abstract][Full Text] [Related]
6. PKA increases in the olfactory bulb act as unconditioned stimuli and provide evidence for parallel memory systems: pairing odor with increased PKA creates intermediate- and long-term, but not short-term, memories. Grimes MT; Harley CW; Darby-King A; McLean JH Learn Mem; 2012 Feb; 19(3):107-15. PubMed ID: 22354948 [TBL] [Abstract][Full Text] [Related]
7. Interaction of NMDA receptors and L-type calcium channels during early odor preference learning in rats. Jerome D; Hou Q; Yuan Q Eur J Neurosci; 2012 Oct; 36(8):3134-41. PubMed ID: 22762736 [TBL] [Abstract][Full Text] [Related]
8. Odor preference learning and memory modify GluA1 phosphorylation and GluA1 distribution in the neonate rat olfactory bulb: testing the AMPA receptor hypothesis in an appetitive learning model. Cui W; Darby-King A; Grimes MT; Howland JG; Wang YT; McLean JH; Harley CW Learn Mem; 2011; 18(5):283-91. PubMed ID: 21498562 [TBL] [Abstract][Full Text] [Related]
11. Calcineurin inhibition eliminates the normal inverted U curve, enhances acquisition and prolongs memory in a mammalian 3'-5'-cyclic AMP-dependent learning paradigm. Christie-Fougere MM; Darby-King A; Harley CW; McLean JH Neuroscience; 2009 Feb; 158(4):1277-83. PubMed ID: 19041926 [TBL] [Abstract][Full Text] [Related]
12. Histone acetylation in the olfactory bulb of young rats facilitates aversive olfactory learning and synaptic plasticity. Wang YJ; Okutani F; Murata Y; Taniguchi M; Namba T; Kaba H Neuroscience; 2013 Mar; 232():21-31. PubMed ID: 23262233 [TBL] [Abstract][Full Text] [Related]
15. Lateralized odor preference training in rat pups reveals an enhanced network response in anterior piriform cortex to olfactory input that parallels extended memory. Fontaine CJ; Harley CW; Yuan Q J Neurosci; 2013 Sep; 33(38):15126-31. PubMed ID: 24048843 [TBL] [Abstract][Full Text] [Related]
16. Odor preference and olfactory memory are impaired in Olfaxin-deficient mice. Islam S; Ueda M; Nishida E; Wang MX; Osawa M; Lee D; Itoh M; Nakagawa K; Tana ; Nakagawa T Brain Res; 2018 Jun; 1688():81-90. PubMed ID: 29571668 [TBL] [Abstract][Full Text] [Related]
17. A role for the anterior piriform cortex in early odor preference learning: evidence for multiple olfactory learning structures in the rat pup. Morrison GL; Fontaine CJ; Harley CW; Yuan Q J Neurophysiol; 2013 Jul; 110(1):141-52. PubMed ID: 23576704 [TBL] [Abstract][Full Text] [Related]
18. Optical imaging of odor preference memory in the rat olfactory bulb. Yuan Q; Harley CW; McLean JH; Knöpfel T J Neurophysiol; 2002 Jun; 87(6):3156-9. PubMed ID: 12037216 [TBL] [Abstract][Full Text] [Related]
19. A phosphodiesterase inhibitor, cilomilast, enhances cAMP activity to restore conditioned odor preference memory after serotonergic depletion in the neonate rat. McLean JH; Smith A; Rogers S; Clarke K; Darby-King A; Harley CW Neurobiol Learn Mem; 2009 Jul; 92(1):63-9. PubMed ID: 19233302 [TBL] [Abstract][Full Text] [Related]
20. NMDA receptors in mouse anterior piriform cortex initialize early odor preference learning and L-type calcium channels engage for long-term memory. Mukherjee B; Yuan Q Sci Rep; 2016 Oct; 6():35256. PubMed ID: 27739540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]