These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 29421734)
1. Transport of low molecular weight organic compounds in compacted illite and kaolinite. Chen Y; Glaus MA; Van Loon LR; Mäder U Chemosphere; 2018 May; 198():226-237. PubMed ID: 29421734 [No Abstract] [Full Text] [Related]
2. Sorption of organic cations to phyllosilicate clay minerals: CEC-normalization, salt dependency, and the role of electrostatic and hydrophobic effects. Droge ST; Goss KU Environ Sci Technol; 2013 Dec; 47(24):14224-32. PubMed ID: 24266737 [TBL] [Abstract][Full Text] [Related]
3. Sorption of hydrophobic organic compounds on natural sorbents and organoclays from aqueous and non-aqueous solutions: a mini-review. Moyo F; Tandlich R; Wilhelmi BS; Balaz S Int J Environ Res Public Health; 2014 May; 11(5):5020-48. PubMed ID: 24821385 [TBL] [Abstract][Full Text] [Related]
4. Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays. Sánchez-Martín MJ; Dorado MC; del Hoyo C; Rodríguez-Cruz MS J Hazard Mater; 2008 Jan; 150(1):115-23. PubMed ID: 17532126 [TBL] [Abstract][Full Text] [Related]
5. Effects of clay minerals on Cr(VI) reduction by organic compounds. Deng B; Lan L; Houston K; Brady PV Environ Monit Assess; 2003 May; 84(1-2):5-18. PubMed ID: 12733805 [TBL] [Abstract][Full Text] [Related]
6. Understanding the sorption mechanisms of aflatoxin B1 to kaolinite, illite, and smectite clays via a comparative computational study. Kang F; Ge Y; Hu X; Goikavi C; Waigi MG; Gao Y; Ling W J Hazard Mater; 2016 Dec; 320():80-87. PubMed ID: 27513372 [TBL] [Abstract][Full Text] [Related]
7. Diffusion of organic anions in clay-rich media: Retardation and effect of anion exclusion. Dagnelie RVH; Rasamimanana S; Blin V; Radwan J; Thory E; Robinet JC; Lefèvre G Chemosphere; 2018 Dec; 213():472-480. PubMed ID: 30245224 [TBL] [Abstract][Full Text] [Related]
8. The important role of surface hydroxyl groups in aluminum activation during phyllosilicate mineral acidification. Li KW; Lu HL; Nkoh JN; Xu RK Chemosphere; 2023 Feb; 313():137570. PubMed ID: 36563731 [TBL] [Abstract][Full Text] [Related]
9. Adsorption of picloram on clays nontronite, illite and kaolinite: equilibrium and herbicide-clays surface complexes. Marco-Brown JL; Gaigneaux EM; Torres Sánchez RM; Dos Santos Afonso M J Environ Sci Health B; 2019; 54(4):281-289. PubMed ID: 30755089 [TBL] [Abstract][Full Text] [Related]
10. Surface binding site analysis of Ca2+-homoionized clay-humic acid complexes. Martinez RE; Sharma P; Kappler A J Colloid Interface Sci; 2010 Dec; 352(2):526-34. PubMed ID: 20864115 [TBL] [Abstract][Full Text] [Related]
12. Arsenic(V) adsorption mechanism using kaolinite, montmorillonite and illite from aqueous medium. Mohapatra D; Mishra D; Chaudhury GR; Das RP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Mar; 42(4):463-9. PubMed ID: 17365316 [TBL] [Abstract][Full Text] [Related]
13. Measurement of Cu and Zn adsorption onto surficial sediment components: new evidence for less importance of clay minerals. Wang X; Li Y J Hazard Mater; 2011 May; 189(3):719-23. PubMed ID: 21466918 [TBL] [Abstract][Full Text] [Related]
14. Desorption of arsenic from clay and humic acid-coated clay by dissolved phosphate and silicate. Sharma P; Kappler A J Contam Hydrol; 2011 Nov; 126(3-4):216-25. PubMed ID: 22115087 [TBL] [Abstract][Full Text] [Related]
15. Translational diffusion of water and its dependence on temperature in charged and uncharged clays: A neutron scattering study. González Sánchez F; Jurányi F; Gimmi T; Van Loon L; Unruh T; Diamond LW J Chem Phys; 2008 Nov; 129(17):174706. PubMed ID: 19045369 [TBL] [Abstract][Full Text] [Related]
16. Sorption of a nonionic surfactant Tween 80 by minerals and soils. Kang S; Jeong HY J Hazard Mater; 2015 Mar; 284():143-50. PubMed ID: 25463228 [TBL] [Abstract][Full Text] [Related]
17. [Mechanism of tritium persistence in porous media like clay minerals]. Wu DJ; Wang JS; Teng YG; Zhang KN Huan Jing Ke Xue; 2011 Mar; 32(3):742-8. PubMed ID: 21634173 [TBL] [Abstract][Full Text] [Related]
18. Development and evaluation of a new sorption model for organic cations in soil: contributions from organic matter and clay minerals. Droge ST; Goss KU Environ Sci Technol; 2013 Dec; 47(24):14233-41. PubMed ID: 24266749 [TBL] [Abstract][Full Text] [Related]
19. Adsorption of dicarboxylic acids by clay minerals as examined by in situ ATR-FTIR and ex situ DRIFT. Kang S; Xing B Langmuir; 2007 Jun; 23(13):7024-31. PubMed ID: 17508766 [TBL] [Abstract][Full Text] [Related]
20. Preferential adsorption of extracellular polymeric substances from bacteria on clay minerals and iron oxide. Cao Y; Wei X; Cai P; Huang Q; Rong X; Liang W Colloids Surf B Biointerfaces; 2011 Mar; 83(1):122-7. PubMed ID: 21130614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]