BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29421741)

  • 1. Removal of metal(oid)s from contaminated water using iron-coated peat sorbent.
    Kasiuliene A; Carabante I; Bhattacharya P; Caporale AG; Adamo P; Kumpiene J
    Chemosphere; 2018 May; 198():290-296. PubMed ID: 29421741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of metal (loid) contaminated solutions using iron-peat as sorbent: is landfilling a suitable management option for the spent sorbent?
    Kasiuliene A; Carabante I; Bhattacharya P; Kumpiene J
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21425-21436. PubMed ID: 31119550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.
    Xie X; Wang Y; Pi K; Liu C; Li J; Liu Y; Wang Z; Duan M
    Sci Total Environ; 2015 Sep; 527-528():38-46. PubMed ID: 25956146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and desorption of bivalent metals to hematite nanoparticles.
    Grover VA; Hu J; Engates KE; Shipley HJ
    Environ Toxicol Chem; 2012 Jan; 31(1):86-92. PubMed ID: 21994178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal sorption by peat and algae treated peat: kinetics and factors affecting the process.
    Lourie E; Gjengedal E
    Chemosphere; 2011 Oct; 85(5):759-64. PubMed ID: 21788059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption/desorption of arsenic by tropical peat: influence of organic matter, iron and aluminium.
    de Oliveira LK; Melo CA; Goveia D; Lobo FA; Armienta Hernández MA; Fraceto LF; Rosa AH
    Environ Technol; 2015; 36(1-4):149-59. PubMed ID: 25413109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash.
    Nilsson M; Andreas L; Lagerkvist A
    Waste Manag; 2016 May; 51():97-104. PubMed ID: 26786400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper and zinc adsorption onto poorly humified Sphagnum and Carex peat.
    Ringqvist L; Oborn I
    Water Res; 2002 May; 36(9):2233-42. PubMed ID: 12108716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trace metals geochemistry for health assessment coupled with adsorption remediation method for the groundwater of Lorong Serai 4, Hulu Langat, west coast of Peninsular Malaysia.
    Usman UA; Yusoff I; Raoov M; Hodgkinson J
    Environ Geochem Health; 2020 Oct; 42(10):3079-3099. PubMed ID: 32180058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form.
    Doula MK
    Water Res; 2009 Aug; 43(15):3659-72. PubMed ID: 19576609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of barrier materials for removing pollutants from groundwater rich in natural organic matter.
    Kozyatnyk I; Haglund P; Lövgren L; Tysklind M; Gustafsson A; Törneman N
    Water Sci Technol; 2014; 70(1):32-9. PubMed ID: 25026576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron humate as a low-cost sorbent for metal ions.
    Janos P; Fedorovic J; Stanková P; Grötschelová S; Rejnek J; Stopka P
    Environ Technol; 2006 Feb; 27(2):169-81. PubMed ID: 16506513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peat filter performance under changing environmental conditions.
    Kalmykova Y; Strömvall AM; Rauch S; Morrison G
    J Hazard Mater; 2009 Jul; 166(1):389-93. PubMed ID: 19117671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash.
    Mathieu JL; Gadgil AJ; Addy SE; Kowolik K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Sep; 45(11):1446-60. PubMed ID: 20694883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic removal using natural biomaterial-based sorbents.
    Ansone L; Klavins M; Viksna A
    Environ Geochem Health; 2013 Oct; 35(5):633-42. PubMed ID: 23793448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH, temperature and co-existing anions on the Removal of Cr(VI) in groundwater by green synthesized nZVI/Ni.
    Zhu F; He S; Liu T
    Ecotoxicol Environ Saf; 2018 Nov; 163():544-550. PubMed ID: 30077151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical and microbiological evaluation of novel chemical treatment methods for acid sulfate soils.
    Högfors-Rönnholm E; Christel S; Dalhem K; Lillhonga T; Engblom S; Österholm P; Dopson M
    Sci Total Environ; 2018 Jun; 625():39-49. PubMed ID: 29287211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles.
    An B; Zhao D
    J Hazard Mater; 2012 Apr; 211-212():332-41. PubMed ID: 22119304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and performance evaluation of Al/Fe oxide coated diatomaceous earth in groundwater defluoridation: Towards fluorosis mitigation.
    Izuagie AA; Gitari WM; Gumbo JR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Aug; 51(10):810-24. PubMed ID: 27220558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption of thallium(I) ions by peat.
    Robalds A; Klavins M; Dreijalte L
    Water Sci Technol; 2013; 68(10):2208-13. PubMed ID: 24292469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.