These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29421901)

  • 1. Effect of pore geometry on the compressibility of a confined simple fluid.
    Dobrzanski CD; Maximov MA; Gor GY
    J Chem Phys; 2018 Feb; 148(5):054503. PubMed ID: 29421901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulus-pressure equation for confined fluids.
    Gor GY; Siderius DW; Shen VK; Bernstein N
    J Chem Phys; 2016 Oct; 145(16):164505. PubMed ID: 27802643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relation between pore size and the compressibility of a confined fluid.
    Gor GY; Siderius DW; Rasmussen CJ; Krekelberg WP; Shen VK; Bernstein N
    J Chem Phys; 2015 Nov; 143(19):194506. PubMed ID: 26590541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic Properties of Confined Fluids in Nanopores: An Acoustic-Propagation Model.
    Sun Z; Kang Y; Li S
    J Phys Chem B; 2022 Oct; 126(40):8010-8020. PubMed ID: 36179366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Simulations Shed Light on Potential Uses of Ultrasound in Nitrogen Adsorption Experiments.
    Maximov MA; Gor GY
    Langmuir; 2018 Dec; 34(51):15650-15657. PubMed ID: 30475628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic characterization of fluids confined in heterogeneous pores by monte carlo simulations in the grand canonical and the isobaric-isothermal ensembles.
    Puibasset J
    J Phys Chem B; 2005 Apr; 109(16):8185-94. PubMed ID: 16851957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pressure on the freezing of pure fluids and mixtures confined in nanopores.
    Coasne B; Czwartos J; Sliwinska-Bartkowiak M; Gubbins KE
    J Phys Chem B; 2009 Oct; 113(42):13874-81. PubMed ID: 19627116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic pressure of simple fluids confined in cylindrical nanopores by isothermal-isobaric Monte Carlo: influence of fluid/substrate interactions.
    Puibasset J
    J Chem Phys; 2007 Aug; 127(7):074702. PubMed ID: 17718622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic study of water adsorbed in nanoporous glasses.
    Ogbebor J; Valenza JJ; Ravikovitch PI; Karunarathne A; Muraro G; Lebedev M; Gurevich B; Khalizov AF; Gor GY
    Phys Rev E; 2023 Aug; 108(2-1):024802. PubMed ID: 37723796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption stress changes the elasticity of liquid argon confined in a nanopore.
    Gor GY
    Langmuir; 2014 Nov; 30(45):13564-9. PubMed ID: 25346060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness.
    Coasne B; Pellenq RJ
    J Chem Phys; 2004 Feb; 120(6):2913-22. PubMed ID: 15268439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A grand canonical Monte Carlo study of capillary condensation in mesoporous media: effect of the pore morphology and topology.
    Coasne B; Pellenq RJ
    J Chem Phys; 2004 Aug; 121(8):3767-74. PubMed ID: 15303945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavitation in metastable liquid nitrogen confined to nanoscale pores.
    Rasmussen CJ; Vishnyakov A; Thommes M; Smarsly BM; Kleitz F; Neimark AV
    Langmuir; 2010 Jun; 26(12):10147-57. PubMed ID: 20210340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface excess free energy of simple fluids confined in cylindrical pores by isothermal-isobaric Monte Carlo: influence of pore size.
    Puibasset J
    J Chem Phys; 2007 May; 126(18):184701. PubMed ID: 17508818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat of adsorption, adsorption stress, and optimal storage of methane in slit and cylindrical carbon pores predicted by classical density functional theory.
    Hlushak S
    Phys Chem Chem Phys; 2018 Jan; 20(2):872-888. PubMed ID: 29239426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of interconnections on gas adsorption in materials with spherical mesopores: A Monte Carlo simulation study.
    Maximov MA; Molina M; Gor GY
    J Chem Phys; 2021 Mar; 154(11):114706. PubMed ID: 33752360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirements to Determine the Average Pore Size of Nanoporous Media Using Ultrasound.
    Schappert K; Pelster R
    ACS Omega; 2018 Dec; 3(12):18906-18910. PubMed ID: 31458452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local Grand Canonical Monte Carlo Simulation Method for Confined Fluids.
    Vo P; Lu H; Ma K; Forsman J; Woodward CE
    J Chem Theory Comput; 2019 Dec; 15(12):6944-6957. PubMed ID: 31665596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore-lattice deformations in ordered mesoporous matrices: experimental studies and theoretical analysis.
    Schoen M; Paris O; Günther G; Müter D; Prass J; Fratzl P
    Phys Chem Chem Phys; 2010 Oct; 12(37):11267-79. PubMed ID: 20668767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gibbs Ensemble Monte Carlo Simulation of Fluids in Confinement: Relation between the Differential and Integral Pressures.
    Erdős M; Galteland O; Bedeaux D; Kjelstrup S; Moultos OA; Vlugt TJH
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32050452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.