BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29422244)

  • 1. Silymarin prevents diabetes-induced hyperpermeability in human retinal endothelial cells.
    García-Ramírez M; Turch M; Simó-Servat O; Hernández C; Simó R
    Endocrinol Diabetes Nutr (Engl Ed); 2018 Apr; 65(4):200-205. PubMed ID: 29422244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteopontin-induced vascular hyperpermeability through tight junction disruption in diabetic retina.
    Someya H; Ito M; Nishio Y; Sato T; Harimoto K; Takeuchi M
    Exp Eye Res; 2022 Jul; 220():109094. PubMed ID: 35490836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Α-Melanocyte-Stimulating Hormone Protects Early Diabetic Retina from Blood-Retinal Barrier Breakdown and Vascular Leakage via MC4R.
    Cai S; Yang Q; Hou M; Han Q; Zhang H; Wang J; Qi C; Bo Q; Ru Y; Yang W; Gu Z; Wei R; Cao Y; Li X; Zhang Y
    Cell Physiol Biochem; 2018; 45(2):505-522. PubMed ID: 29402864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone morphogenetic protein 2: a potential new player in the pathogenesis of diabetic retinopathy.
    Hussein KA; Choksi K; Akeel S; Ahmad S; Megyerdi S; El-Sherbiny M; Nawaz M; Abu El-Asrar A; Al-Shabrawey M
    Exp Eye Res; 2014 Aug; 125():79-88. PubMed ID: 24910902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scutellarin alleviates blood-retina-barrier oxidative stress injury initiated by activated microglia cells during the development of diabetic retinopathy.
    Mei X; Zhang T; Ouyang H; Lu B; Wang Z; Ji L
    Biochem Pharmacol; 2019 Jan; 159():82-95. PubMed ID: 30447218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BMP9 (Bone Morphogenetic Protein-9)/Alk1 (Activin-Like Kinase Receptor Type I) Signaling Prevents Hyperglycemia-Induced Vascular Permeability.
    Akla N; Viallard C; Popovic N; Lora Gil C; Sapieha P; Larrivée B
    Arterioscler Thromb Vasc Biol; 2018 Aug; 38(8):1821-1836. PubMed ID: 29880487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melatonin prevents blood-retinal barrier breakdown and mitochondrial dysfunction in high glucose and hypoxia-induced in vitro diabetic macular edema model.
    Doğanlar ZB; Doğanlar O; Kurtdere K; Güçlü H; Chasan T; Turgut E
    Toxicol In Vitro; 2021 Sep; 75():105191. PubMed ID: 33962019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural flavonoid galangin alleviates microglia-trigged blood-retinal barrier dysfunction during the development of diabetic retinopathy.
    Zhang T; Mei X; Ouyang H; Lu B; Yu Z; Wang Z; Ji L
    J Nutr Biochem; 2019 Mar; 65():1-14. PubMed ID: 30597356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood-retinal barrier protection against high glucose damage: The role of P2X7 receptor.
    Platania CBM; Lazzara F; Fidilio A; Fresta CG; Conti F; Giurdanella G; Leggio GM; Salomone S; Drago F; Bucolo C
    Biochem Pharmacol; 2019 Oct; 168():249-258. PubMed ID: 31302133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascular endothelial growth factor-A
    Ved N; Hulse RP; Bestall SM; Donaldson LF; Bainbridge JW; Bates DO
    Clin Sci (Lond); 2017 Jun; 131(12):1225-1243. PubMed ID: 28341661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of total lignans from Fructus Arctii on Streptozotocin-induced diabetic retinopathy in Wistar rats.
    Zhang H; Gao Y; Zhang J; Wang K; Jin T; Wang H; Ruan K; Wu F; Xu Z
    J Ethnopharmacol; 2020 Jun; 255():112773. PubMed ID: 32199990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct downstream signaling and the roles of VEGF and PlGF in high glucose-mediated injuries of human retinal endothelial cells in culture.
    Jiao W; Ji JF; Xu W; Bu W; Zheng Y; Ma A; Zhao B; Fan Q
    Sci Rep; 2019 Oct; 9(1):15339. PubMed ID: 31653890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protective factors in diabetic retinopathy: focus on blood-retinal barrier.
    Zhang C; Wang H; Nie J; Wang F
    Discov Med; 2014 Sep; 18(98):105-12. PubMed ID: 25227751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-vascular endothelial growth factor drug treatment of diabetic macular edema: the evolution continues.
    Stewart MW
    Curr Diabetes Rev; 2012 Jul; 8(4):237-46. PubMed ID: 22515701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group.
    Antonetti DA; Barber AJ; Khin S; Lieth E; Tarbell JM; Gardner TW
    Diabetes; 1998 Dec; 47(12):1953-9. PubMed ID: 9836530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmalemma Vesicle-Associated Protein Has a Key Role in Blood-Retinal Barrier Loss.
    Wisniewska-Kruk J; van der Wijk AE; van Veen HA; Gorgels TG; Vogels IM; Versteeg D; Van Noorden CJ; Schlingemann RO; Klaassen I
    Am J Pathol; 2016 Apr; 186(4):1044-54. PubMed ID: 26878208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fenofibric acid prevents retinal pigment epithelium disruption induced by interleukin-1β by suppressing AMP-activated protein kinase (AMPK) activation.
    Villarroel M; Garcia-Ramírez M; Corraliza L; Hernández C; Simó R
    Diabetologia; 2011 Jun; 54(6):1543-53. PubMed ID: 21369818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Suppression of Kallistatin on High-Glucose-Induced Proliferation of Retinal Endothelial Cells in Diabetic Retinopathy.
    Xing Q; Zhang G; Kang L; Wu J; Chen H; Liu G; Zhu R; Guan H; Lu P
    Ophthalmic Res; 2017; 57(3):141-149. PubMed ID: 27537690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel therapeutic targets in diabetic macular edema: Beyond VEGF.
    Urias EA; Urias GA; Monickaraj F; McGuire P; Das A
    Vision Res; 2017 Oct; 139():221-227. PubMed ID: 28993218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular analysis of blood-retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy.
    Wisniewska-Kruk J; Klaassen I; Vogels IM; Magno AL; Lai CM; Van Noorden CJ; Schlingemann RO; Rakoczy EP
    Exp Eye Res; 2014 May; 122():123-31. PubMed ID: 24703908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.